ﻻ يوجد ملخص باللغة العربية
Efficiency and security have become critical issues during the development of the long-range (LoRa) system for Internet-of-Things (IoT) applications. The centralized work method in the LoRa system, where all packages are processed and kept in the central cloud, cannot well exploit the resources in LoRa gateways and also makes it vulnerable to security risks, such as data falsification or data loss. On the other hand, the blockchain has the potential to provide a decentralized and secure infrastructure for the LoRa system. However, there are significant challenges in deploying blockchain at LoRa gateways with limited edge computing abilities. This article proposes a design and implementation of the blockchain-enabled LoRa system with edge computing by using the open-source Hyperledger Fabric, which is called as HyperLoRa. According to different features of LoRa data, a blockchain network with multiple ledgers is designed, each of which stores a specific kind of LoRa data. LoRa gateways can participate in the operations of the blockchain and share the ledger that keep the time-critical network data with small size. Then, the edge computing abilities of LoRa gateways are utilized to handle the join procedure and application packages processing. Furthermore, a HyperLoRa prototype is implemented on embedded hardware, which demonstrates the feasibility of deploying the blockchain into LoRa gateways with limited computing and storage resources. Finally, various experiments are conducted to evaluate the performances of the proposed LoRa system.
Attracted by the inherent security and privacy protection of the blockchain, incorporating blockchain into Internet of Things (IoT) has been widely studied in these years. However, the mining process requires high computational power, which prevents
Mobile edge computing (MEC) has been envisioned as a promising paradigm to handle the massive volume of data generated from ubiquitous mobile devices for enabling intelligent services with the help of artificial intelligence (AI). Traditionally, AI t
Long Range (LoRa) network is emerging as one of the most promising Low Power Wide Area (LPWA) networks, since it enables the energy-constraint devices distributed over wide areas to establish affordable connectivity. However, how to implement a cost-
In recent years, the blockchain-based Internet of Things (IoT) has been researched and applied widely, where each IoT device can act as a node in the blockchain. However, these lightweight nodes usually do not have enough computing power to complete
Blockchain protocols come with a variety of security guarantees. For example, BFT-inspired protocols such as Algorand tend to be secure in the partially synchronous setting, while longest chain protocols like Bitcoin will normally require stronger sy