ﻻ يوجد ملخص باللغة العربية
Authorization or access control limits the actions a user may perform on a computer system, based on predetermined access control policies, thus preventing access by illegitimate actors. Access control for the Internet of Things (IoT) should be tailored to take inherent IoT network scale and device resource constraints into consideration. However, common authorization systems in IoT employ conventional schemes, which suffer from overheads and centralization. Recent research trends suggest that blockchain has the potential to tackle the issues of access control in IoT. However, proposed solutions overlook the importance of building dynamic and flexible access control mechanisms. In this paper, we design a decentralized attribute-based access control mechanism with an auxiliary Trust and Reputation System (TRS) for IoT authorization. Our system progressively quantifies the trust and reputation scores of each node in the network and incorporates the scores into the access control mechanism to achieve dynamic and flexible access control. We design our system to run on a public blockchain, but we separate the storage of sensitive information, such as users attributes, to private sidechains for privacy preservation. We implement our solution in a public Rinkeby Ethereum test-network interconnected with a lab-scale testbed. Our evaluations consider various performance metrics to highlight the applicability of our solution for IoT contexts.
OAuth 2.0 is the industry-standard protocol for authorization. It facilitates secure service provisioning, as well as secure interoperability among diverse stakeholders. All OAuth 2.0 protocol flows result in the creation of an access token, which is
In this paper, we propose a trust-centric privacy-preserving blockchain for dynamic spectrum access in IoT networks. To be specific, we propose a trust evaluation mechanism to evaluate the trustworthiness of sensing nodes and design a Proof-of-Trust
This paper considers the use of novel technologies for mitigating attacks that aim at compromising intrusion detection systems (IDSs). Solutions based on collaborative intrusion detection networks (CIDNs) could increase the resilience against such at
The advancement in cloud networks has enabled connectivity of both traditional networked elements and new devices from all walks of life, thereby forming the Internet of Things (IoT). In an IoT setting, improving and scaling network components as wel
Blockchain has received tremendous attention as a secure, distributed, and anonymous framework for the Internet of Things (IoT). As a distributed system, blockchain trades off scalability for distribution, which limits the technologys adaptation for