ﻻ يوجد ملخص باللغة العربية
Mobile edge computing (MEC) has been envisioned as a promising paradigm to handle the massive volume of data generated from ubiquitous mobile devices for enabling intelligent services with the help of artificial intelligence (AI). Traditionally, AI techniques often require centralized data collection and training in a single entity, e.g., an MEC server, which is now becoming a weak point due to data privacy concerns and high data communication overheads. In this context, federated learning (FL) has been proposed to provide collaborative data training solutions, by coordinating multiple mobile devices to train a shared AI model without exposing their data, which enjoys considerable privacy enhancement. To improve the security and scalability of FL implementation, blockchain as a ledger technology is attractive for realizing decentralized FL training without the need for any central server. Particularly, the integration of FL and blockchain leads to a new paradigm, called FLchain, which potentially transforms intelligent MEC networks into decentralized, secure, and privacy-enhancing systems. This article presents an overview of the fundamental concepts and explores the opportunities of FLchain in MEC networks. We identify several main topics in FLchain design, including communication cost, resource allocation, incentive mechanism, security and privacy protection. The key solutions for FLchain design are provided, and the lessons learned as well as the outlooks are also discussed. Then, we investigate the applications of FLchain in popular MEC domains, such as edge data sharing, edge content caching and edge crowdsensing. Finally, important research challenges and future directions are also highlighted.
Services computing can offer a high-level abstraction to support diverse applications via encapsulating various computing infrastructures. Though services computing has greatly boosted the productivity of developers, it is faced with three main chall
Blockchain is gaining momentum as a promising technology for many application domains, one of them being the Edge-of- Things (EoT) that is enabled by the integration of edge computing and the Internet-of-Things (IoT). Particularly, the amalgamation o
The emerging Federated Edge Learning (FEL) technique has drawn considerable attention, which not only ensures good machine learning performance but also solves data island problems caused by data privacy concerns. However, large-scale FEL still faces
Traditional machine learning is centralized in the cloud (data centers). Recently, the security concern and the availability of abundant data and computation resources in wireless networks are pushing the deployment of learning algorithms towards the
By pushing computation, cache, and network control to the edge, mobile edge computing (MEC) is expected to play a leading role in fifth generation (5G) and future sixth generation (6G). Nevertheless, facing ubiquitous fast-growing computational deman