ترغب بنشر مسار تعليمي؟ اضغط هنا

High-Order Nonreciprocal Add-Drop Filter

94   0   0.0 ( 0 )
 نشر من قبل Jianjun Liu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Topological photonics have led to the robust optical behavior of the device, which has solved the problem of the influence of manufacturing defects and perturbations on the device performance. Meanwhile, temporal coupled-mode theory (t-CMT) has been developed and applied widely. However, the t-CMT of cascaded coupling cavities (CCC) system and its corresponding high-order filter has yet to be established. Here the t-CMT of CCC system is established based on the existing t-CMT. By combining the CCC with the topological waveguides, a versatile design scheme of the high-order nonreciprocal add-drop filter (HONAF) is proposed. The relationship between coupling effect of cavities and transmission and filtering performance of HONAF is analyzed quantitatively, then a method to improve the transmission efficiency and quality factor of the filter is given. Based on the combination of gyromagnetic photonic crystals and decagonal Penrose-type photonic quasicrystals, a HONAF is proposed. The transmission and filtering performance of the HONAF are numerically analyzed, which verifies the consistency between the theoretical prediction and the numerical simulation. The t-CMT of CCC system established can be widely used in the coupled resonator optical waveguides and their related systems. The designed HONAF can also be applied and compatible to microwave communication system.

قيم البحث

اقرأ أيضاً

An add-drop filter (ADF) fabricated using a whispering gallery mode resonator has different crosstalks for add and drop functions due to non-zero intrinsic losses of the resonator. Here, we show that introducing gain medium in the resonator and optic ally pumping it below the lasing threshold not only allows loss compensation to achieve similar and lower crosstalks but also tunability in bandwidth and add-drop efficiency. For an active ADF fabricated using an erbium-ytterbium co-doped microsphere, we achieved 24-fold enhancement in the intrinsic quality factor, 3.5-fold increase in drop efficiency, bandwidth tunability of 35 MHz and a crosstalk of only 2%.
We report a novel design of a compact wavelength add-drop multiplexer utilizing dielectric-loaded surface plasmon-polariton waveguides (DLSPPWs). The DLSPPW-based configuration exploits routing properties of directional couplers and filtering abiliti es of Bragg gratings. We present practical realization of a 20-$mu$m-long device operating at telecom wavelengths that can reroute optical signals separated by approximately 70 nm in the wavelength band. We characterize the performance of the fabricated structures using scanning near-field optical microscopy as well as leakage-radiation microscopy and support our findings with numerical simulations.
90 - Mei Wang , Cui Kong , Zhao-Yu Sun 2021
We propose an effective approach for creating robust nonreciprocity of high-order sidebands, including the first-, second- and third-order sidebands, at microwave frequencies. This approach relies on magnon Kerr nonlinearity in a cavity magnonics sys tem composed of two microwave cavities and one yttrium iron garnet (YIG) sphere. By manipulating the driving power applied on YIG and the frequency detuning between the magnon mode in YIG and the driving field, the effective Kerr nonlinearity can be strengthened, thereby inducing strong transmission non-reciprocity. More interestingly, we find the higher the sideband order, the stronger the transmission nonreciprocity marked by the higher isolation ratio in the optimal detuning regime. Such a series of equally-spaced high-order sidebands have potential applications in frequency comb-like precision measurement, besides structuring high-performance on-chip nonreciprocal devices.
Terahertz (THz) band is considered as the next frontier in wireless communications. The emerging THz multiplexing techniques are expected to dramatically increase the information capacity of THz communications far beyond a single channel limit. In th is work, we explore the THz frequency-division multiplexing modality enabled by novel add-drop multiplexer (ADM) design. Based on modular two-wire plasmonic waveguides fabricated using additive manufacturing and metallization techniques, we demonstrate four-port THz ADMs containing grating-loaded side couplers for operation at ~140 GHz carrier frequency. Particular attention is payed to the design of plasmonic waveguide Bragg gratings and directional couplers capable of splitting broadband THz light in spectral and spatial domains, respectively. Finally, we demonstrate multiplexing and demultiplexing of THz signals with bit rates up to 6 Gbps using the developed ADMs. We believe that proposed plasmonic circuits hold strong potential to provide robust integrated solutions for analogue signal processing in the upcoming THz communications.
For two electrically small nonreciprocal scatterers an analytical electromagnetic model of polarizabilities is developed. Both particles are bianisotropic: the so-called Tellegen-omega particle and moving-chiral particle. Analytical results are compa red to the full-wave numerical simulations. Both models satisfy to main physical restrictions and leave no doubts in the possibility to realize these particles experimentally. This paper is a necessary step towards applications of nonreciprocal bianisotropic particles such as perfect electromagnetic isolators, twist polarizers, thin-sheet phase shifters, and other devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا