ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonreciprocal high-order sidebands induced by magnon Kerr nonlinearity

91   0   0.0 ( 0 )
 نشر من قبل Mei Wang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose an effective approach for creating robust nonreciprocity of high-order sidebands, including the first-, second- and third-order sidebands, at microwave frequencies. This approach relies on magnon Kerr nonlinearity in a cavity magnonics system composed of two microwave cavities and one yttrium iron garnet (YIG) sphere. By manipulating the driving power applied on YIG and the frequency detuning between the magnon mode in YIG and the driving field, the effective Kerr nonlinearity can be strengthened, thereby inducing strong transmission non-reciprocity. More interestingly, we find the higher the sideband order, the stronger the transmission nonreciprocity marked by the higher isolation ratio in the optimal detuning regime. Such a series of equally-spaced high-order sidebands have potential applications in frequency comb-like precision measurement, besides structuring high-performance on-chip nonreciprocal devices.



قيم البحث

اقرأ أيضاً

91 - Qi Feng , Hui Cong , Bin Zhang 2018
In this work, we experimentally study the optical kerr nonlinearities of graphene/Si hybrid waveguides with enhanced self-phase modulation. In the case of CMOS compatible materials for nonlinear optical signal processing, Si and silicon nitride waveg uides have been extensively investigated over the past decade. However, Si waveguides exhibit strong two-photon absorption (TPA) at telecommunication wavelengths, which lead to a significant reduction of nonlinear figure of merit. In contrast, silicon nitride based material system usually suppress the TPA, but simultaneously leads to the reduction of the Kerr nonlinearity by two orders of magnitude. Here, we introduce a graphene/Si hybrid waveguide, which remain the optical properties and CMOS compatibility of Si waveguides, while enhance the Kerr nonlinearity by transferring patterned graphene over the top of the waveguides. The graphene/Si waveguides are measured with a nonlinear parameter of 510 W-1m-1. Enhanced nonlinear figure-of-merit (FOM) of 2.48 has been achieved, which is three times higher than that of the Si waveguide. This work reveals the potential application of graphene/Si hybrid photonic waveguides with high Kerr nonlinearity and FOM for nonlinear all-optical signal processing.
We study the entanglement generated by a weak cross-Kerr nonlinearity between two initial coherent states, one of which has an amplitude close to the single-photon level, while the other one is macroscopic. We show that strong micro-macro entanglemen t is possible for weak phase shifts by choosing the amplitude of the macroscopic beam sufficiently large. We analyze the effects of loss and discuss possible experimental demonstrations of the micro-macro entanglement based on homodyne tomography and on a new entanglement witness.
Rainbow gravity modifies general relativity by introducing an energy dependent metric, which is expected to have a role in the quantum theory of black holes and in quantum gravity at Planck energy scale. We show that rainbow gravity can be simulated in the laboratory by nonlinear waves in nonlocal media, as those occurring in Bose-condensed gases and nonlinear optics. We reveal that at a classical level, a nonlocal nonlinear Schrodinger equation may emulate the curved space time in proximity of a rotating black hole as dictated by the rainbow gravity scenario. We also demonstrate that a fully quantized analysis is possible. By the positive $mathcal{P}$-representation, we study superradiance and show that the instability of a black-hole and the existence of an event horizon are inhibited by an energy dependent metric. Our results open the way to a number of fascinating experimental tests of quantum gravity theories and quantum field theory in curved manifolds, and also demonstrate that these theories may be novel tools for open problems in nonlinear quantum physics.
It is shown that non-centrosymmetric materials with bulk second-order nonlinear susceptibility can be used to generate strongly antibunched radiation at an arbitrary wavelength, solely determined by the resonant behavior of suitably engineered couple d microcavities. The proposed scheme exploits the unconventional photon blockade of a coherent driving field at the input of a coupled cavity system, where one of the two cavities is engineered to resonate at both fundamental and second harmonic frequencies, respectively. Remarkably, the unconventional blockade mechanism occurs with reasonably low quality factors at both harmonics, and does not require a sharp doubly-resonant condition for the second cavity, thus proving its feasibility with current semiconductor technology.
We study the effect of Kerr nonlinearity in quantum thermal machines having a Kerr-nonlinear oscillator as working substance and operating under the ideal quantum Otto cycle. We first investigate the efficiency of a Kerr-nonlinear heat engine and sho w that by varying the Kerr-nonlinear strength the efficiency surpasses in up to 2.5 times the efficiency of a quantum harmonic oscillator Otto engine. Moreover, the Kerr-nonlinearity makes the coefficient of performance of the Kerr-nonlinear refrigerator to be as large as 3 times the performance of quantum harmonic oscillator Otto refrigerators. These results were obtained using realistic parameters from circuit quantum electrodynamics devices formed by superconducting circuits and operating in the microwave regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا