ترغب بنشر مسار تعليمي؟ اضغط هنا

Polarizabilities of nonreciprocal bianisotropic particles

123   0   0.0 ( 0 )
 نشر من قبل Younes Ra'di
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

For two electrically small nonreciprocal scatterers an analytical electromagnetic model of polarizabilities is developed. Both particles are bianisotropic: the so-called Tellegen-omega particle and moving-chiral particle. Analytical results are compared to the full-wave numerical simulations. Both models satisfy to main physical restrictions and leave no doubts in the possibility to realize these particles experimentally. This paper is a necessary step towards applications of nonreciprocal bianisotropic particles such as perfect electromagnetic isolators, twist polarizers, thin-sheet phase shifters, and other devices.



قيم البحث

اقرأ أيضاً

A chiral absorber of light can emit spin-polarized (circularly polarized) thermal radiation based on Kirchhoffs law which equates spin-resolved emissivity with spin-resolved absorptivity for reciprocal media at thermal equilibrium. No such law is kno wn for nonreciprocal media. In this work, we discover three spin-resolved Kirchhoffs laws of thermal radiation applicable for both reciprocal and nonreciprocal planar media. In particular, these laws are applicable to multi-layered or composite slabs of generic bianisotropic material classes which include (uniaxial or biaxial) birefringent crystals, (gyrotropic) Weyl semimetals, magnetized semiconductors, plasmas, ferromagnets and ferrites, (magnetoelectric) topological insulators, metamaterials and multiferroic media. We also propose an experiment to verify these laws using a single system of doped Indium Antimonide (InSb) thin film in an external magnetic field. Furthermore, we reveal a surprising result that the planar slabs of all these material classes can emit partially circularly polarized thermal light without requiring any surface patterning, and identify planar configurations which can experience nontrivial thermal optomechanical forces and torques upon thermal emission into the external environment at lower temperature (nonequilibrium). Our work also provides a new fundamental insight of detailed balance of angular momentum (in addition to energy) of equilibrium thermal radiation, and paves the way for practical functionalities based on thermal radiation using nonreciprocal bianisotropic materials.
We provide a detailed discussion on the electromagnetic modeling and classification of polarization converting bianisotropic metasurfaces. To do so, we first present a general approach to compute the scattering response of such metasurfaces, which re lies on a generalized sheet transition conditions based susceptibility model. Then, we review how the fundamental properties of reciprocity, energy conservation, rotation invariance and matching may be expressed in terms of metasurface susceptibilities and scattering parameters, and show how these properties may affect and limit the polarization effects of metasurfaces. Finally, we connect together the metasurface susceptibility model to the structural symmetries of scattering particles and their associated polarization effects. This work thus provides a detailed understanding of the polarization conversion properties of metasurfaces and may prove to be of particular interest for their practical implementation.
98 - A. Lakhtakia 2008
When the electrically thin unit cell of a laminated composite material is made of two bianisotropic sheets whose constitutive properties in the thickness direction are decoupled from the constitutive properties in the interfacial planes, the laminate d composite material can be homogenized into a material not all of whose constitutive parameters are independent of each other. This non-independence of the constitutive dyadics of the constituent materials and the homogenized composite material is captured by two simple constraints, which may not hold if even one of the two constituent materials has more complicated constitutive properties than stated above.
Here we introduce the concept of optimal particles for strong interactions with electromagnetic fields. We assume that a particle occupies a given electrically small volume in space and study the required optimal relations between the particle polari zabilities. In these optimal particles, the inclusion shape and material are chosen so that the particles extract the maximum possible power from given incident fields. It appears that for different excitation scenarios the optimal particles are bianisotropic chiral, omega, moving, and Tellegen particles. The optimal dimensions of the resonance canonical chiral and omega particles are found analytically. Such optimal particles have extreme properties in scattering (for example, zero backscattering or invisibility). Planar arrays of optimal particles possess extreme properties in reflection and transmission (e.g., total absorption or magnetic-wall resonance), and volumetric composites of optimal particles realize, for example, such extreme materials as the chiral nihility medium.
The ability to amplify light within silicon waveguides is central to the development of high-performance silicon photonic device technologies. To this end, the large optical nonlinearities made possible through stimulated Brillouin scattering offer a promising avenue for power-efficient all-silicon amplifiers, with recent demonstrations producing several dB of net amplification. However, scaling the degree of amplification to technologically compelling levels (>10 dB), necessary for everything from filtering to small signal detection, remains an important goal. Here, we significantly enhance the Brillouin amplification process by harnessing an inter-modal Brillouin interaction within a multi-spatial-mode silicon racetrack resonator. Using this approach, we demonstrate more than 20 dB of net Brillouin amplification in silicon, advancing state-of-the-art performance by a factor of 30. This degree of amplification is achieved with modest (~15 mW) continuous-wave pump powers and produces low out-of-band noise. Moreover, we show that this same system behaves as a unidirectional amplifier, providing more than 28 dB of optical nonreciprocity without insertion loss in an all-silicon platform. Building on these results, this device concept opens the door to new types of all-silicon injection-locked Brillouin lasers, high-performance photonic filters, and waveguide-compatible distributed optomechanical phenomena.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا