ترغب بنشر مسار تعليمي؟ اضغط هنا

Data-driven medium-range weather prediction with a Resnet pretrained on climate simulations: A new model for WeatherBench

68   0   0.0 ( 0 )
 نشر من قبل Stephan Rasp
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Numerical weather prediction has traditionally been based on physical models of the atmosphere. Recently, however, the rise of deep learning has created increased interest in purely data-driven medium-range weather forecasting with first studies exploring the feasibility of such an approach. To accelerate progress in this area, the WeatherBench benchmark challenge was defined. Here, we train a deep residual convolutional neural network (Resnet) to predict geopotential, temperature and precipitation at 5.625 degree resolution up to 5 days ahead. To avoid overfitting and improve forecast skill, we pretrain the model using historical climate model output before fine-tuning on reanalysis data. The resulting forecasts outperform previous submissions to WeatherBench and are comparable in skill to a physical baseline at similar resolution. We also analyze how the neural network creates its predictions and find that, with some exceptions, it is compatible with physical reasoning. Finally, we perform scaling experiments to estimate the potential skill of data-driven approaches at higher resolutions.

قيم البحث

اقرأ أيضاً

Data-driven approaches, most prominently deep learning, have become powerful tools for prediction in many domains. A natural question to ask is whether data-driven methods could also be used to predict global weather patterns days in advance. First s tudies show promise but the lack of a common dataset and evaluation metrics make inter-comparison between studies difficult. Here we present a benchmark dataset for data-driven medium-range weather forecasting, a topic of high scientific interest for atmospheric and computer scientists alike. We provide data derived from the ERA5 archive that has been processed to facilitate the use in machine learning models. We propose simple and clear evaluation metrics which will enable a direct comparison between different methods. Further, we provide baseline scores from simple linear regression techniques, deep learning models, as well as purely physical forecasting models. The dataset is publicly available at https://github.com/pangeo-data/WeatherBench and the companion code is reproducible with tutorials for getting started. We hope that this dataset will accelerate research in data-driven weather forecasting.
In recent years, there has been growing interest in using Precipitable Water Vapor (PWV) derived from Global Positioning System (GPS) signal delays to predict rainfall. However, the occurrence of rainfall is dependent on a myriad of atmospheric param eters. This paper proposes a systematic approach to analyze various parameters that affect precipitation in the atmosphere. Different ground-based weather features like Temperature, Relative Humidity, Dew Point, Solar Radiation, PWV along with Seasonal and Diurnal variables are identified, and a detailed feature correlation study is presented. While all features play a significant role in rainfall classification, only a few of them, such as PWV, Solar Radiation, Seasonal and Diurnal features, stand out for rainfall prediction. Based on these findings, an optimum set of features are used in a data-driven machine learning algorithm for rainfall prediction. The experimental evaluation using a four-year (2012-2015) database shows a true detection rate of 80.4%, a false alarm rate of 20.3%, and an overall accuracy of 79.6%. Compared to the existing literature, our method significantly reduces the false alarm rates.
307 - Tim Palmer 2020
In this essay, I outline a personal vision of how I think Numerical Weather Prediction (NWP) should evolve in the years leading up to 2030 and hence what it should look like in 2030. By NWP I mean initial-value predictions from timescales of hours to seasons ahead. Here I want to focus on how NWP can better help save lives from increasingly extreme weather in those parts of the world where society is most vulnerable. Whilst we can rightly be proud of many parts of our NWP heritage, its evolution has been influenced by national or institutional politics as well as by underpinning scientific principles. Sometimes these conflict with each other. It is important to be able to separate these issues when discussing how best meteorological science can serve society in 2030; otherwise any disruptive change - no matter how compelling the scientific case for it - becomes impossibly difficult.
Modern weather and climate models share a common heritage, and often even components, however they are used in different ways to answer fundamentally different questions. As such, attempts to emulate them using machine learning should reflect this. W hile the use of machine learning to emulate weather forecast models is a relatively new endeavour there is a rich history of climate model emulation. This is primarily because while weather modelling is an initial condition problem which intimately depends on the current state of the atmosphere, climate modelling is predominantly a boundary condition problem. In order to emulate the response of the climate to different drivers therefore, representation of the full dynamical evolution of the atmosphere is neither necessary, or in many cases, desirable. Climate scientists are typically interested in different questions also. Indeed emulating the steady-state climate response has been possible for many years and provides significant speed increases that allow solving inverse problems for e.g. parameter estimation. Nevertheless, the large datasets, non-linear relationships and limited training data make Climate a domain which is rich in interesting machine learning challenges. Here I seek to set out the current state of climate model emulation and demonstrate how, despite some challenges, recent advances in machine learning provide new opportunities for creating useful statistical models of the climate.
The atmosphere is chaotic. This fundamental property of the climate system makes forecasting weather incredibly challenging: its impossible to expect weather models to ever provide perfect predictions of the Earth system beyond timescales of approxim ately 2 weeks. Instead, atmospheric scientists look for specific states of the climate system that lead to more predictable behaviour than others. Here, we demonstrate how neural networks can be used, not only to leverage these states to make skillful predictions, but moreover to identify the climatic conditions that lead to enhanced predictability. Furthermore, we employ a neural network interpretability method called ``layer-wise relevance propagation to create heatmaps of the regions in the input most relevant for a networks output. For Earth scientists, these relevant regions for the neural networks prediction are by far the most important product of our study: they provide scientific insight into the physical mechanisms that lead to enhanced weather predictability. While we demonstrate our approach for the atmospheric science domain, this methodology is applicable to a large range of geoscientific problems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا