ﻻ يوجد ملخص باللغة العربية
In recent years, there has been growing interest in using Precipitable Water Vapor (PWV) derived from Global Positioning System (GPS) signal delays to predict rainfall. However, the occurrence of rainfall is dependent on a myriad of atmospheric parameters. This paper proposes a systematic approach to analyze various parameters that affect precipitation in the atmosphere. Different ground-based weather features like Temperature, Relative Humidity, Dew Point, Solar Radiation, PWV along with Seasonal and Diurnal variables are identified, and a detailed feature correlation study is presented. While all features play a significant role in rainfall classification, only a few of them, such as PWV, Solar Radiation, Seasonal and Diurnal features, stand out for rainfall prediction. Based on these findings, an optimum set of features are used in a data-driven machine learning algorithm for rainfall prediction. The experimental evaluation using a four-year (2012-2015) database shows a true detection rate of 80.4%, a false alarm rate of 20.3%, and an overall accuracy of 79.6%. Compared to the existing literature, our method significantly reduces the false alarm rates.
Numerical weather prediction has traditionally been based on physical models of the atmosphere. Recently, however, the rise of deep learning has created increased interest in purely data-driven medium-range weather forecasting with first studies expl
Modeling geophysical processes as low-dimensional dynamical systems and regressing their vector field from data is a promising approach for learning emulators of such systems. We show that when the kernel of these emulators is also learned from data
Data-driven approaches, most prominently deep learning, have become powerful tools for prediction in many domains. A natural question to ask is whether data-driven methods could also be used to predict global weather patterns days in advance. First s
We introduce a data assimilation method to estimate model parameters with observations of passive tracers by directly assimilating Lagrangian Coherent Structures. Our approach differs from the usual Lagrangian Data Assimilation approach, where parame
Weak lensing by large-scale structure is a powerful probe of cosmology if the apparent alignments in the shapes of distant galaxies can be accurately measured. We study the performance of a fully data-driven approach, based on MetaDetection, focusing