ترغب بنشر مسار تعليمي؟ اضغط هنا

Identifying Opportunities for Skillful Weather Prediction with Interpretable Neural Networks

99   0   0.0 ( 0 )
 نشر من قبل Elizabeth Barnes
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The atmosphere is chaotic. This fundamental property of the climate system makes forecasting weather incredibly challenging: its impossible to expect weather models to ever provide perfect predictions of the Earth system beyond timescales of approximately 2 weeks. Instead, atmospheric scientists look for specific states of the climate system that lead to more predictable behaviour than others. Here, we demonstrate how neural networks can be used, not only to leverage these states to make skillful predictions, but moreover to identify the climatic conditions that lead to enhanced predictability. Furthermore, we employ a neural network interpretability method called ``layer-wise relevance propagation to create heatmaps of the regions in the input most relevant for a networks output. For Earth scientists, these relevant regions for the neural networks prediction are by far the most important product of our study: they provide scientific insight into the physical mechanisms that lead to enhanced weather predictability. While we demonstrate our approach for the atmospheric science domain, this methodology is applicable to a large range of geoscientific problems.

قيم البحث

اقرأ أيضاً

The earth system is exceedingly complex and often chaotic in nature, making prediction incredibly challenging: we cannot expect to make perfect predictions all of the time. Instead, we look for specific states of the system that lead to more predicta ble behavior than others, often termed forecasts of opportunity. When these opportunities are not present, scientists need prediction systems that are capable of saying I dont know. We introduce a novel loss function, termed the NotWrong loss, that allows neural networks to identify forecasts of opportunity for classification problems. The NotWrong loss introduces an abstention class that allows the network to identify the more confident samples and abstain (say I dont know) on the less confident samples. The abstention loss is designed to abstain on a user-defined fraction of the samples via a PID controller. Unlike many machine learning methods used to reject samples post-training, the NotWrong loss is applied during training to preferentially learn from the more confident samples. We show that the NotWrong loss outperforms other existing loss functions for multiple climate use cases. The implementation of the proposed loss function is straightforward in most network architectures designed for classification as it only requires the addition of an abstention class to the output layer and modification of the loss function.
The earth system is exceedingly complex and often chaotic in nature, making prediction incredibly challenging: we cannot expect to make perfect predictions all of the time. Instead, we look for specific states of the system that lead to more predicta ble behavior than others, often termed forecasts of opportunity. When these opportunities are not present, scientists need prediction systems that are capable of saying I dont know. We introduce a novel loss function, termed abstention loss, that allows neural networks to identify forecasts of opportunity for regression problems. The abstention loss works by incorporating uncertainty in the networks prediction to identify the more confident samples and abstain (say I dont know) on the less confident samples. The abstention loss is designed to determine the optimal abstention fraction, or abstain on a user-defined fraction via a PID controller. Unlike many methods for attaching uncertainty to neural network predictions post-training, the abstention loss is applied during training to preferentially learn from the more confident samples. The abstention loss is built upon a standard computer science method. While the standard approach is itself a simple yet powerful tool for incorporating uncertainty in regression problems, we demonstrate that the abstention loss outperforms this more standard method for the synthetic climate use cases explored here. The implementation of proposed loss function is straightforward in most network architectures designed for regression, as it only requires modification of the output layer and loss function.
307 - Tim Palmer 2020
In this essay, I outline a personal vision of how I think Numerical Weather Prediction (NWP) should evolve in the years leading up to 2030 and hence what it should look like in 2030. By NWP I mean initial-value predictions from timescales of hours to seasons ahead. Here I want to focus on how NWP can better help save lives from increasingly extreme weather in those parts of the world where society is most vulnerable. Whilst we can rightly be proud of many parts of our NWP heritage, its evolution has been influenced by national or institutional politics as well as by underpinning scientific principles. Sometimes these conflict with each other. It is important to be able to separate these issues when discussing how best meteorological science can serve society in 2030; otherwise any disruptive change - no matter how compelling the scientific case for it - becomes impossibly difficult.
Neural networks have become increasingly prevalent within the geosciences, although a common limitation of their usage has been a lack of methods to interpret what the networks learn and how they make decisions. As such, neural networks have often be en used within the geosciences to most accurately identify a desired output given a set of inputs, with the interpretation of what the network learns used as a secondary metric to ensure the network is making the right decision for the right reason. Neural network interpretation techniques have become more advanced in recent years, however, and we therefore propose that the ultimate objective of using a neural network can also be the interpretation of what the network has learned rather than the output itself. We show that the interpretation of neural networks can enable the discovery of scientifically meaningful connections within geoscientific data. In particular, we use two methods for neural network interpretation called backwards optimization and layerwise relevance propagation, both of which project the decision pathways of a network back onto the original input dimensions. To the best of our knowledge, LRP has not yet been applied to geoscientific research, and we believe it has great potential in this area. We show how these interpretation techniques can be used to reliably infer scientifically meaningful information from neural networks by applying them to common climate patterns. These results suggest that combining interpretable neural networks with novel scientific hypotheses will open the door to many new avenues in neural network-related geoscience research.
The formation of precipitation in state-of-the-art weather and climate models is an important process. The understanding of its relationship with other variables can lead to endless benefits, particularly for the worlds monsoon regions dependent on r ainfall as a support for livelihood. Various factors play a crucial role in the formation of rainfall, and those physical processes are leading to significant biases in the operational weather forecasts. We use the UNET architecture of a deep convolutional neural network with residual learning as a proof of concept to learn global data-driven models of precipitation. The models are trained on reanalysis datasets projected on the cubed-sphere projection to minimize errors due to spherical distortion. The results are compared with the operational dynamical model used by the India Meteorological Department. The theoretical deep learning-based model shows doubling of the grid point, as well as area averaged skill measured in Pearson correlation coefficients relative to operational system. This study is a proof-of-concept showing that residual learning-based UNET can unravel physical relationships to target precipitation, and those physical constraints can be used in the dynamical operational models towards improved precipitation forecasts. Our results pave the way for the development of online, hybrid models in the future.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا