ﻻ يوجد ملخص باللغة العربية
A Dynkin game is a zero-sum, stochastic stopping game between two players where either player can stop the game at any time for an observable payoff. Typically the payoff process of the max-player is assumed to be smaller than the payoff process of the min-player, while the payoff process for simultaneous stopping is in between the two. In this paper, we study general Dynkin games whose payoff processes are in arbitrary positions. In both discrete and continuous time settings, we provide necessary and sufficient conditions for the existence of pure strategy Nash equilibria and epsilon-optimal stopping times in all possible subgames.
Mean-field games with absorption is a class of games, that have been introduced in Campi and Fischer [7] and that can be viewed as natural limits of symmetric stochastic differential games with a large number of players who, interacting through a mea
Mean-payoff games on timed automata are played on the infinite weighted graph of configurations of priced timed automata between two players, Player Min and Player Max, by moving a token along the states of the graph to form an infinite run. The goal
In this paper, we consider the optimal stopping problem on semi-Markov processes (SMPs) with finite horizon, and aim to establish the existence and computation of optimal stopping times. To achieve the goal, we first develop the main results of finit
We revisit the classical singular control problem of minimizing running and controlling costs. The problem arises in inventory control, as well as in healthcare management and mathematical finance. Existing studies have shown the optimality of a barr
Forcing finite state mean field games by a relevant form of common noise is a subtle issue, which has been addressed only recently. Among others, one possible way is to subject the simplex valued dynamics of an equilibrium by a so-called Wright-Fishe