ﻻ يوجد ملخص باللغة العربية
Mean-field games with absorption is a class of games, that have been introduced in Campi and Fischer [7] and that can be viewed as natural limits of symmetric stochastic differential games with a large number of players who, interacting through a mean-field, leave the game as soon as their private states hit some given boundary. In this paper, we push the study of such games further, extending their scope along two main directions. First, a direct dependence on past absorptions has been introduced in the drift of players state dynamics. Second, the boundedness of coefficients and costs has been considerably relaxed including drift and costs with linear growth. Therefore, the mean-field interaction among the players takes place in two ways: via the empirical sub-probability measure of the surviving players and through a process representing the fraction of past absorptions over time. Moreover, relaxing the boundedness of the coefficients allows for more realistic dynamics for players private states. We prove existence of solutions of the mean-field game in strict as well as relaxed feedback form. Finally, we show that such solutions induce approximate Nash equilibria for the $N$-player game with vanishing error in the mean-field limit as $N to infty$.
Forcing finite state mean field games by a relevant form of common noise is a subtle issue, which has been addressed only recently. Among others, one possible way is to subject the simplex valued dynamics of an equilibrium by a so-called Wright-Fishe
We study the asymptotic organization among many optimizing individuals interacting in a suitable moderate way. We justify this limiting game by proving that its solution provides approximate Nash equilibria for large but finite player games. This pro
In this paper, we develop a PDE approach to consider the optimal strategy of mean field controlled stochastic system. Firstly, we discuss mean field SDEs and associated Fokker-Plank eqautions. Secondly, we consider a fully-coupled system of forward-b
We study Nash equilibria for a sequence of symmetric $N$-player stochastic games of finite-fuel capacity expansion with singular controls and their mean-field game (MFG) counterpart. We construct a solution of the MFG via a simple iterative scheme th
We study a class of linear-quadratic stochastic differential games in which each player interacts directly only with its nearest neighbors in a given graph. We find a semi-explicit Markovian equilibrium for any transitive graph, in terms of the empir