ﻻ يوجد ملخص باللغة العربية
Forcing finite state mean field games by a relevant form of common noise is a subtle issue, which has been addressed only recently. Among others, one possible way is to subject the simplex valued dynamics of an equilibrium by a so-called Wright-Fisher noise, very much in the spirit of stochastic models in population genetics. A key feature is that such a random forcing preserves the structure of the simplex, which is nothing but, in this setting, the probability space over the state space of the game. The purpose of this article is hence to elucidate the finite player version and, accordingly, to prove that $N$-player equilibria indeed converge towards the solution of such a kind of Wright-Fisher mean field game. Whilst part of the analysis is made easier by the fact that the corresponding master equation has already been proved to be uniquely solvable under the presence of the common noise, it becomes however more subtle than in the standard setting because the mean field interaction between the players now occurs through a weighted empirical measure. In other words, each player carries its own weight, which hence may differ from $1/N$ and which, most of all, evolves with the common noise.
Mean-field games with absorption is a class of games, that have been introduced in Campi and Fischer [7] and that can be viewed as natural limits of symmetric stochastic differential games with a large number of players who, interacting through a mea
A theory of existence and uniqueness is developed for general stochastic differential mean field games with common noise. The concepts of strong and weak solutions are introduced in analogy with the theory of stochastic differential equations, and ex
We study the asymptotic organization among many optimizing individuals interacting in a suitable moderate way. We justify this limiting game by proving that its solution provides approximate Nash equilibria for large but finite player games. This pro
We study Nash equilibria for a sequence of symmetric $N$-player stochastic games of finite-fuel capacity expansion with singular controls and their mean-field game (MFG) counterpart. We construct a solution of the MFG via a simple iterative scheme th
We consider a mean field game describing the limit of a stochastic differential game of $N$-players whose state dynamics are subject to idiosyncratic and common noise and that can be absorbed when they hit a prescribed region of the state space. We p