ﻻ يوجد ملخص باللغة العربية
We revisit the classical singular control problem of minimizing running and controlling costs. The problem arises in inventory control, as well as in healthcare management and mathematical finance. Existing studies have shown the optimality of a barrier strategy when driven by the Brownian motion or Levy processes with one-side jumps. Under the assumption that the running cost function is convex, we show the optimality of a barrier strategy for a general class of Levy processes. Numerical results are also given.
We extend the concept of packing dimension profiles, due to Falconer and Howroyd (1997) and Howroyd (2001), and use our extension in order to determine the packing dimension of an arbitrary image of a general Levy process.
We investigate the algebra of repeated integrals of semimartingales. We prove that a minimal family of semimartingales generates a quasi-shuffle algebra. In essence, to fulfill the minimality criterion, first, the family must be a minimal generator o
We give equivalent conditions for the existence of generalized moments of a Levy process $(X_t)_{tgeq 0}$. We show, in particular, that the existence of a generalized $g$-moment is equivalent to uniform integrability of $(g(X_t))_{tin [0,1]}$. As an
Scale functions play a central role in the fluctuation theory of spectrally negative Levy processes and often appear in the context of martingale relations. These relations are often complicated to establish requiring excursion theory in favour of It
A Dynkin game is a zero-sum, stochastic stopping game between two players where either player can stop the game at any time for an observable payoff. Typically the payoff process of the max-player is assumed to be smaller than the payoff process of t