ترغب بنشر مسار تعليمي؟ اضغط هنا

Bayesian Sparse Mediation Analysis with Targeted Penalization of Natural Indirect Effects

178   0   0.0 ( 0 )
 نشر من قبل Yanyi Song
 تاريخ النشر 2020
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Causal mediation analysis aims to characterize an exposures effect on an outcome and quantify the indirect effect that acts through a given mediator or a group of mediators of interest. With the increasing availability of measurements on a large number of potential mediators, like the epigenome or the microbiome, new statistical methods are needed to simultaneously accommodate high-dimensional mediators while directly target penalization of the natural indirect effect (NIE) for active mediator identification. Here, we develop two novel prior models for identification of active mediators in high-dimensional mediation analysis through penalizing NIEs in a Bayesian paradigm. Both methods specify a joint prior distribution on the exposure-mediator effect and mediator-outcome effect with either (a) a four-component Gaussian mixture prior or (b) a product threshold Gaussian prior. By jointly modeling the two parameters that contribute to the NIE, the proposed methods enable penalization on their product in a targeted way. Resultant inference can take into account the four-component composite structure underlying the NIE. We show through simulations that the proposed methods improve both selection and estimation accuracy compared to other competing methods. We applied our methods for an in-depth analysis of two ongoing epidemiologic studies: the Multi-Ethnic Study of Atherosclerosis (MESA) and the LIFECODES birth cohort. The identified active mediators in both studies reveal important biological pathways for understanding disease mechanisms.

قيم البحث

اقرأ أيضاً

We consider Bayesian high-dimensional mediation analysis to identify among a large set of correlated potential mediators the active ones that mediate the effect from an exposure variable to an outcome of interest. Correlations among mediators are com monly observed in modern data analysis; examples include the activated voxels within connected regions in brain image data, regulatory signals driven by gene networks in genome data and correlated exposure data from the same source. When correlations are present among active mediators, mediation analysis that fails to account for such correlation can be sub-optimal and may lead to a loss of power in identifying active mediators. Building upon a recent high-dimensional mediation analysis framework, we propose two Bayesian hierarchical models, one with a Gaussian mixture prior that enables correlated mediator selection and the other with a Potts mixture prior that accounts for the correlation among active mediators in mediation analysis. We develop efficient sampling algorithms for both methods. Various simulations demonstrate that our methods enable effective identification of correlated active mediators, which could be missed by using existing methods that assume prior independence among active mediators. The proposed methods are applied to the LIFECODES birth cohort and the Multi-Ethnic Study of Atherosclerosis (MESA) and identified new active mediators with important biological implications.
Online experimentation is at the core of Booking.coms customer-centric product development. While randomised controlled trials are a powerful tool for estimating the overall effects of product changes on business metrics, they often fall short in exp laining the mechanism of change. This becomes problematic when decision-making depends on being able to distinguish between the direct effect of a treatment on some outcome variable and its indirect effect via a mediator variable. In this paper, we demonstrate the need for mediation analyses in online experimentation, and use simulated data to show how these methods help identify and estimate direct causal effect. Failing to take into account all confounders can lead to biased estimates, so we include sensitivity analyses to help gauge the robustness of estimates to missing causal factors.
72 - Wei Li , Chunchen Liu , Zhi Geng 2020
Causal mediation analysis is used to evaluate direct and indirect causal effects of a treatment on an outcome of interest through an intermediate variable or a mediator.It is difficult to identify the direct and indirect causal effects because the me diator cannot be randomly assigned in many real applications. In this article, we consider a causal model including latent confounders between the mediator and the outcome. We present sufficient conditions for identifying the direct and indirect effects and propose an approach for estimating them. The performance of the proposed approach is evaluated by simulation studies. Finally, we apply the approach to a data set of the customer loyalty survey by a telecom company.
Greater understanding of the pathways through which an environmental mixture operates is important to design effective interventions. We present new methodology to estimate the natural direct effect (NDE), natural indirect effect (NIE), and controlle d direct effects (CDEs) of a complex mixture exposure on an outcome through a mediator variable. We implement Bayesian Kernel Machine Regression (BKMR) to allow for all possible interactions and nonlinear effects of 1) the co-exposures on the mediator, 2) the co-exposures and mediator on the outcome, and 3) selected covariates on the mediator and/or outcome. From the posterior predictive distributions of the mediator and outcome, we simulate counterfactuals to obtain posterior samples, estimates, and credible intervals of the mediation effects. Our simulation study demonstrates that when the exposure-mediator and exposure-mediator-outcome relationships are complex, BKMR-Causal Mediation Analysis performs better than current mediation methods. We applied our methodology to quantify the contribution of birth length as a mediator between in utero co-exposure to arsenic, manganese and lead, and childrens neurodevelopmental scores, in a prospective birth cohort in Bangladesh. Among younger children, we found a negative association between the metal mixture and neurodevelopment. We also found evidence that birth length mediates the effect of exposure to the metal mixture on neurodevelopment for younger children. If birth length were fixed to its $75^{th}$ percentile value, the effect of the metal mixture on neurodevelopment decreases, suggesting that nutritional interventions to help increase birth length could potentially block the harmful effects of the metal mixture on neurodevelopment.
The natural indirect effect (NIE) and mediation proportion (MP) are two measures of primary interest in mediation analysis. The standard approach for estimating NIE and MP is through the product method, which involves a model for the outcome conditio nal on the mediator and exposure and another model describing the exposure-mediator relationship. The purpose of this article is to comprehensively develop and investigate the finite-sample performance of NIE and MP estimators via the product method. With four common data types, we propose closed-form interval estimators via the theory of estimating equations and multivariate delta method, and evaluate its empirical performance relative to the bootstrap approach. In addition, we have observed that the rare outcome assumption is frequently invoked to approximate the NIE and MP with a binary outcome, although this approximation may lead to non-negligible bias when the outcome is common. We therefore introduce the exact expressions for NIE and MP with a binary outcome without the rare outcome assumption and compare its performance with the approximate estimators. Based upon these theoretical developments and empirical studies, we offer several practical recommendations to inform practice. An R package mediateP is developed to implement the methods for point and variance estimation discussed in this paper.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا