ترغب بنشر مسار تعليمي؟ اضغط هنا

Bayesian kernel machine regression-causal mediation analysis

78   0   0.0 ( 0 )
 نشر من قبل Katrina Devick
 تاريخ النشر 2018
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Greater understanding of the pathways through which an environmental mixture operates is important to design effective interventions. We present new methodology to estimate the natural direct effect (NDE), natural indirect effect (NIE), and controlled direct effects (CDEs) of a complex mixture exposure on an outcome through a mediator variable. We implement Bayesian Kernel Machine Regression (BKMR) to allow for all possible interactions and nonlinear effects of 1) the co-exposures on the mediator, 2) the co-exposures and mediator on the outcome, and 3) selected covariates on the mediator and/or outcome. From the posterior predictive distributions of the mediator and outcome, we simulate counterfactuals to obtain posterior samples, estimates, and credible intervals of the mediation effects. Our simulation study demonstrates that when the exposure-mediator and exposure-mediator-outcome relationships are complex, BKMR-Causal Mediation Analysis performs better than current mediation methods. We applied our methodology to quantify the contribution of birth length as a mediator between in utero co-exposure to arsenic, manganese and lead, and childrens neurodevelopmental scores, in a prospective birth cohort in Bangladesh. Among younger children, we found a negative association between the metal mixture and neurodevelopment. We also found evidence that birth length mediates the effect of exposure to the metal mixture on neurodevelopment for younger children. If birth length were fixed to its $75^{th}$ percentile value, the effect of the metal mixture on neurodevelopment decreases, suggesting that nutritional interventions to help increase birth length could potentially block the harmful effects of the metal mixture on neurodevelopment.



قيم البحث

اقرأ أيضاً

Causal variance decompositions for a given disease-specific quality indicator can be used to quantify differences in performance between hospitals or health care providers. While variance decompositions can demonstrate variation in quality of care, c ausal mediation analysis can be used to study care pathways leading to the differences in performance between the institutions. This raises the question of whether the two approaches can be combined to decompose between-hospital variation in an outcome type indicator to that mediated through a given process (indirect effect) and remaining variation due to all other pathways (direct effect). For this purpose, we derive a causal mediation analysis decomposition of between-hospital variance, discuss its interpretation, and propose an estimation approach based on generalized linear mixed models for the outcome and the mediator. We study the performance of the estimators in a simulation study and demonstrate its use in administrative data on kidney cancer care in Ontario.
Causal mediation analysis has historically been limited in two important ways: (i) a focus has traditionally been placed on binary treatments and static interventions, and (ii) direct and indirect effect decompositions have been pursued that are only identifiable in the absence of intermediate confounders affected by treatment. We present a theoretical study of an (in)direct effect decomposition of the population intervention effect, defined by stochastic interventions jointly applied to the treatment and mediators. In contrast to existing proposals, our causal effects can be evaluated regardless of whether a treatment is categorical or continuous and remain well-defined even in the presence of intermediate confounders affected by treatment. Our (in)direct effects are identifiable without a restrictive assumption on cross-world counterfactual independencies, allowing for substantive conclusions drawn from them to be validated in randomized controlled trials. Beyond the novel effects introduced, we provide a careful study of nonparametric efficiency theory relevant for the construction of flexible, multiply robust estimators of our (in)direct effects, while avoiding undue restrictions induced by assuming parametric models of nuisance parameter functionals. To complement our nonparametric estimation strategy, we introduce inferential techniques for constructing confidence intervals and hypothesis tests, and discuss open source software implementing the proposed methodology.
Causal mediation analysis is a useful tool for epidemiological research, but it has been criticized for relying on a cross-world independence assumption that is empirically difficult to verify and problematic to justify based on background knowledge. In the present article we aim to assist the applied researcher in understanding this assumption. Synthesizing what is known about the cross-world independence assumption, we discuss the relationship between assumptions for causal mediation analyses, causal models, and non-parametric identification of natural direct and indirect effects. In particular we give a practical example of an applied setting where the cross-world independence assumption is violated even without any post-treatment confounding. Further, we review possible alternatives to the cross-world independence assumption, including the use of computation of bounds that avoid the assumption altogether. Finally, we carry out a numerical study in which the cross-world independence assumption is violated to assess the ensuing bias in estimating natural direct and indirect effects. We conclude with recommendations for carrying out causal mediation analyses.
93 - Hao Ran , Yang Bai 2021
In many longitudinal studies, the covariate and response are often intermittently observed at irregular, mismatched and subject-specific times. How to deal with such data when covariate and response are observed asynchronously is an often raised prob lem. Bayesian Additive Regression Trees(BART) is a Bayesian non-Parametric approach which has been shown to be competitive with the best modern predictive methods such as random forest and boosted decision trees. The sum of trees structure combined with a Bayesian inferential framework provide a accurate and robust statistic method. BART variant soft Bayesian Additive Regression Trees(SBART) constructed using randomized decision trees was developed and substantial theoretical and practical benefits were shown. In this paper, we propose a weighted SBART model solution for asynchronous longitudinal data. In comparison to other methods, the current methods are valid under with little assumptions on the covariate process. Extensive simulation studies provide numerical support for this solution. And data from an HIV study is used to illustrate our methodology
Interventional effects for mediation analysis were proposed as a solution to the lack of identifiability of natural (in)direct effects in the presence of a mediator-outcome confounder affected by exposure. We present a theoretical and computational s tudy of the properties of the interventional (in)direct effect estimands based on the efficient influence fucntion (EIF) in the non-parametric statistical model. We use the EIF to develop two asymptotically optimal, non-parametric estimators that leverage data-adaptive regression for estimation of the nuisance parameters: a one-step estimator and a targeted minimum loss estimator. A free and open source texttt{R} package implementing our proposed estimators is made available on GitHub. We further present results establishing the conditions under which these estimators are consistent, multiply robust, $n^{1/2}$-consistent and efficient. We illustrate the finite-sample performance of the estimators and corroborate our theoretical results in a simulation study. We also demonstrate the use of the estimators in our motivating application to elucidate the mechanisms behind the unintended harmful effects that a housing intervention had on adolescent girls risk behavior.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا