ﻻ يوجد ملخص باللغة العربية
Suppressing the effects of scattered radiation in flat panel detector, FPD, based CBCT still remains to be a challenge. To address the scatter problem, we have been investigating the feasibility of a two dimensional antiscatter grid (2D ASG) concept for FPDs. Although a 2D ASG can potentially provide high scatter rejection capability, primary transmission characteristics of a 2D ASG and its implications in image quality plays a more critical role in implementation of the 2D ASG concept. Thus, in this work, a computational model was developed to investigate the primary transmission properties of the 2D ASG for various grid and FPD pixel geometries, and the improvement in signal to noise ratio,SNR, was calculated analytically to demonstrate the impact of 2D ASGs transmission characteristics on image quality. Computational model showed that average primary transmission fraction (Tp) strongly depends on the septal thickness of 2D ASG, and 2D ASG can provide higher Tp than existing radiographic ASGs at a septal thickness of 0.1 mm. Due to the higher Tp, 2D ASG was also predicted to provide SNR improvements in projections in low to moderate scatter environments typically observed in CBCT imaging. On the other hand, the model also indicated that the shadow or footprint of the 2D ASG leads to spatially nonuniform variations in primary signal in FPD pixels. Reduction of septal thickness and optimization of 2D ASGs pitch may play an essential role in reducing such variations in primary image signal, and avoiding potential image artifacts associated with 2D ASGs footprint.
Flattening filter free (FFF) beams due to their non-uniformity, are sub-optimal for larger field sizes. The purpose of this study was to investigate the incident electron beam distributions that would produce flat FFF beams without the use of flatten
The effect of moderate cooling on CdZnTe semiconductor detectors has been studied for the COBRA experiment. Improvements in energy resolution and low energy threshold were observed and quantified as a function of temperature. Leakage currents are fou
Recent miniaturization of electronics in very small, low-cost and low-power configurations suitable for use in spacecraft have inspired innovative small-scale satellite concepts, such as ChipSats, centimeter-scale satellites with a mass of a few gram
This paper presents a first study of the performance of a novel 2D position-sensitive microstrip detector, where the resistive charge division method was implemented by replacing the metallic electrodes with resistive electrodes made of polycrystalli
Plasma panel detectors are a variant of micropattern detectors that are sensitive to ionizing radiation. They are motivated by the design and operation of plasma display panels. The detectors consist of arrays of electrically and optically isolated p