ﻻ يوجد ملخص باللغة العربية
Recent miniaturization of electronics in very small, low-cost and low-power configurations suitable for use in spacecraft have inspired innovative small-scale satellite concepts, such as ChipSats, centimeter-scale satellites with a mass of a few grams. These extremely small spacecraft have the potential to usher in a new age of space science accessibility. Due to their low ballistic coefficient, ChipSats can potentially be used in a swarm constellation for extended surveys of planetary atmospheres, providing large amounts of data with high reliability and redundancy. We present a preliminary feasibility analysis of a ChipSat planetary atmospheric entry mission with the purpose of searching for traces of microscopic lifeforms in the atmosphere of Venus. Indeed, the lower cloud layer of the Venusian atmosphere could be a good target for searching for microbial lifeforms, due to the favourable atmospheric conditions and the presence of micron-sized sulfuric acid aerosols. A numerical model simulating the planetary entry of a spacecraft of specified geometry, applicable to any atmosphere for which sufficient atmospheric data are available, is implemented and verified. The results are used to create a high-level design of a ChipSat mission cruising in the Venusian atmosphere at altitudes favorable for the existence of life. The paper discusses the ChipSat mission concept and considerations about the spacecraft preliminary design at system level, including the selection of a potential payload.
This is a white paper submitted to the Planetary Science and Astrobiology Decadal Survey. The deep atmosphere of Venus is largely unexplored and yet may harbor clues to the evolutionary pathways for a major silicate planet with implications across th
We describe the preliminary design of a magnetograph and visible-light imager instrument to study the solar dynamo processes through observations of the solar surface magnetic field distribution. The instrument will provide measurements of the vector
The Hera Saturn entry probe mission is proposed as an M--class mission led by ESA with a contribution from NASA. It consists of one atmospheric probe to be sent into the atmosphere of Saturn, and a Carrier-Relay spacecraft. In this concept, the Hera
The detection of phosphine (PH3) in the atmosphere of Venus has been recently reported based on millimeter-wave radio observations (Greaves et al. 2020), and its re-analyses (Greaves et al. 2021a/b). In this Matters Arising we perform an independent
The Pierre Auger Observatory has begun a major Upgrade of its already impressive capabilities, with an emphasis on improved mass composition determination using the surface detectors of the Observatory. Known as AugerPrime, the upgrade will include n