ترغب بنشر مسار تعليمي؟ اضغط هنا

Real-Time Uncertainty Estimation in Computer Vision via Uncertainty-Aware Distribution Distillation

104   0   0.0 ( 0 )
 نشر من قبل Yichen Shen
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Calibrated estimates of uncertainty are critical for many real-world computer vision applications of deep learning. While there are several widely-used uncertainty estimation methods, dropout inference stands out for its simplicity and efficacy. This technique, however, requires multiple forward passes through the network during inference and therefore can be too resource-intensive to be deployed in real-time applications. We propose a simple, easy-to-optimize distillation method for learning the conditional predictive distribution of a pre-trained dropout model for fast, sample-free uncertainty estimation in computer vision tasks. We empirically test the effectiveness of the proposed method on both semantic segmentation and depth estimation tasks and demonstrate our method can significantly reduce the inference time, enabling real-time uncertainty quantification, while achieving improved quality of both the uncertainty estimates and predictive performance over the regular dropout model.

قيم البحث

اقرأ أيضاً

Knowledge distillation, which involves extracting the dark knowledge from a teacher network to guide the learning of a student network, has emerged as an essential technique for model compression and transfer learning. Unlike previous works that focu s on the accuracy of student network, here we study a little-explored but important question, i.e., knowledge distillation efficiency. Our goal is to achieve a performance comparable to conventional knowledge distillation with a lower computation cost during training. We show that the UNcertainty-aware mIXup (UNIX) can serve as a clean yet effective solution. The uncertainty sampling strategy is used to evaluate the informativeness of each training sample. Adaptive mixup is applied to uncertain samples to compact knowledge. We further show that the redundancy of conventional knowledge distillation lies in the excessive learning of easy samples. By combining uncertainty and mixup, our approach reduces the redundancy and makes better use of each query to the teacher network. We validate our approach on CIFAR100 and ImageNet. Notably, with only 79% computation cost, we outperform conventional knowledge distillation on CIFAR100 and achieve a comparable result on ImageNet.
Unpaired image-to-image translation refers to learning inter-image-domain mapping in an unsupervised manner. Existing methods often learn deterministic mappings without explicitly modelling the robustness to outliers or predictive uncertainty, leadin g to performance degradation when encountering unseen out-of-distribution (OOD) patterns at test time. To address this limitation, we propose a novel probabilistic method called Uncertainty-aware Generalized Adaptive Cycle Consistency (UGAC), which models the per-pixel residual by generalized Gaussian distribution, capable of modelling heavy-tailed distributions. We compare our model with a wide variety of state-of-the-art methods on two challenging tasks: unpaired image denoising in the natural image and unpaired modality prorogation in medical image domains. Experimental results demonstrate that our model offers superior image generation quality compared to recent methods in terms of quantitative metrics such as signal-to-noise ratio and structural similarity. Our model also exhibits stronger robustness towards OOD test data.
Assessing action quality from videos has attracted growing attention in recent years. Most existing approaches usually tackle this problem based on regression algorithms, which ignore the intrinsic ambiguity in the score labels caused by multiple jud ges or their subjective appraisals. To address this issue, we propose an uncertainty-aware score distribution learning (USDL) approach for action quality assessment (AQA). Specifically, we regard an action as an instance associated with a score distribution, which describes the probability of different evaluated scores. Moreover, under the circumstance where fine-grained score labels are available (e.g., difficulty degree of an action or multiple scores from different judges), we further devise a multi-path uncertainty-aware score distributions learning (MUSDL) method to explore the disentangled components of a score. We conduct experiments on three AQA datasets containing various Olympic actions and surgical activities, where our approaches set new state-of-the-arts under the Spearmans Rank Correlation.
Uncertainty is the only certainty there is. Modeling data uncertainty is essential for regression, especially in unconstrained settings. Traditionally the direct regression formulation is considered and the uncertainty is modeled by modifying the out put space to a certain family of probabilistic distributions. On the other hand, classification based regression and ranking based solutions are more popular in practice while the direct regression methods suffer from the limited performance. How to model the uncertainty within the present-day technologies for regression remains an open issue. In this paper, we propose to learn probabilistic ordinal embeddings which represent each data as a multivariate Gaussian distribution rather than a deterministic point in the latent space. An ordinal distribution constraint is proposed to exploit the ordinal nature of regression. Our probabilistic ordinal embeddings can be integrated into popular regression approaches and empower them with the ability of uncertainty estimation. Experimental results show that our approach achieves competitive performance. Code is available at https://github.com/Li-Wanhua/POEs.
As a result of social network popularity, in recent years, hate speech phenomenon has significantly increased. Due to its harmful effect on minority groups as well as on large communities, there is a pressing need for hate speech detection and filter ing. However, automatic approaches shall not jeopardize free speech, so they shall accompany their decisions with explanations and assessment of uncertainty. Thus, there is a need for predictive machine learning models that not only detect hate speech but also help users understand when texts cross the line and become unacceptable. The reliability of predictions is usually not addressed in text classification. We fill this gap by proposing the adaptation of deep neural networks that can efficiently estimate prediction uncertainty. To reliably detect hate speech, we use Monte Carlo dropout regularization, which mimics Bayesian inference within neural networks. We evaluate our approach using different text embedding methods. We visualize the reliability of results with a novel technique that aids in understanding the classification reliability and errors.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا