ترغب بنشر مسار تعليمي؟ اضغط هنا

Uncertainty-aware Generalized Adaptive CycleGAN

124   0   0.0 ( 0 )
 نشر من قبل Uddeshya Upadhyay
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Unpaired image-to-image translation refers to learning inter-image-domain mapping in an unsupervised manner. Existing methods often learn deterministic mappings without explicitly modelling the robustness to outliers or predictive uncertainty, leading to performance degradation when encountering unseen out-of-distribution (OOD) patterns at test time. To address this limitation, we propose a novel probabilistic method called Uncertainty-aware Generalized Adaptive Cycle Consistency (UGAC), which models the per-pixel residual by generalized Gaussian distribution, capable of modelling heavy-tailed distributions. We compare our model with a wide variety of state-of-the-art methods on two challenging tasks: unpaired image denoising in the natural image and unpaired modality prorogation in medical image domains. Experimental results demonstrate that our model offers superior image generation quality compared to recent methods in terms of quantitative metrics such as signal-to-noise ratio and structural similarity. Our model also exhibits stronger robustness towards OOD test data.



قيم البحث

اقرأ أيضاً

Unsupervised Domain Adaptive (UDA) object re-identification (Re-ID) aims at adapting a model trained on a labeled source domain to an unlabeled target domain. State-of-the-art object Re-ID approaches adopt clustering algorithms to generate pseudo-lab els for the unlabeled target domain. However, the inevitable label noise caused by the clustering procedure significantly degrades the discriminative power of Re-ID model. To address this problem, we propose an uncertainty-aware clustering framework (UCF) for UDA tasks. First, a novel hierarchical clustering scheme is proposed to promote clustering quality. Second, an uncertainty-aware collaborative instance selection method is introduced to select images with reliable labels for model training. Combining both techniques effectively reduces the impact of noisy labels. In addition, we introduce a strong baseline that features a compact contrastive loss. Our UCF method consistently achieves state-of-the-art performance in multiple UDA tasks for object Re-ID, and significantly reduces the gap between unsupervised and supervised Re-ID performance. In particular, the performance of our unsupervised UCF method in the MSMT17$to$Market1501 task is better than that of the fully supervised setting on Market1501. The code of UCF is available at https://github.com/Wang-pengfei/UCF.
Calibrated estimates of uncertainty are critical for many real-world computer vision applications of deep learning. While there are several widely-used uncertainty estimation methods, dropout inference stands out for its simplicity and efficacy. This technique, however, requires multiple forward passes through the network during inference and therefore can be too resource-intensive to be deployed in real-time applications. We propose a simple, easy-to-optimize distillation method for learning the conditional predictive distribution of a pre-trained dropout model for fast, sample-free uncertainty estimation in computer vision tasks. We empirically test the effectiveness of the proposed method on both semantic segmentation and depth estimation tasks and demonstrate our method can significantly reduce the inference time, enabling real-time uncertainty quantification, while achieving improved quality of both the uncertainty estimates and predictive performance over the regular dropout model.
Uncertainty is the only certainty there is. Modeling data uncertainty is essential for regression, especially in unconstrained settings. Traditionally the direct regression formulation is considered and the uncertainty is modeled by modifying the out put space to a certain family of probabilistic distributions. On the other hand, classification based regression and ranking based solutions are more popular in practice while the direct regression methods suffer from the limited performance. How to model the uncertainty within the present-day technologies for regression remains an open issue. In this paper, we propose to learn probabilistic ordinal embeddings which represent each data as a multivariate Gaussian distribution rather than a deterministic point in the latent space. An ordinal distribution constraint is proposed to exploit the ordinal nature of regression. Our probabilistic ordinal embeddings can be integrated into popular regression approaches and empower them with the ability of uncertainty estimation. Experimental results show that our approach achieves competitive performance. Code is available at https://github.com/Li-Wanhua/POEs.
We investigate the compression of deep neural networks by quantizing their weights and activations into multiple binary bases, known as multi-bit networks (MBNs), which accelerate the inference and reduce the storage for the deployment on low-resourc e mobile and embedded platforms. We propose Adaptive Loss-aware Quantization (ALQ), a new MBN quantization pipeline that is able to achieve an average bitwidth below one-bit without notable loss in inference accuracy. Unlike previous MBN quantization solutions that train a quantizer by minimizing the error to reconstruct full precision weights, ALQ directly minimizes the quantization-induced error on the loss function involving neither gradient approximation nor full precision maintenance. ALQ also exploits strategies including adaptive bitwidth, smooth bitwidth reduction, and iterative trained quantization to allow a smaller network size without loss in accuracy. Experiment results on popular image datasets show that ALQ outperforms state-of-the-art compressed networks in terms of both storage and accuracy. Code is available at https://github.com/zqu1992/ALQ
Image-to-image translation plays a vital role in tackling various medical imaging tasks such as attenuation correction, motion correction, undersampled reconstruction, and denoising. Generative adversarial networks have been shown to achieve the stat e-of-the-art in generating high fidelity images for these tasks. However, the state-of-the-art GAN-based frameworks do not estimate the uncertainty in the predictions made by the network that is essential for making informed medical decisions and subsequent revision by medical experts and has recently been shown to improve the performance and interpretability of the model. In this work, we propose an uncertainty-guided progressive learning scheme for image-to-image translation. By incorporating aleatoric uncertainty as attention maps for GANs trained in a progressive manner, we generate images of increasing fidelity progressively. We demonstrate the efficacy of our model on three challenging medical image translation tasks, including PET to CT translation, undersampled MRI reconstruction, and MRI motion artefact correction. Our model generalizes well in three different tasks and improves performance over state of the art under full-supervision and weak-supervision with limited data. Code is released here: https://github.com/ExplainableML/UncerGuidedI2I

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا