ترغب بنشر مسار تعليمي؟ اضغط هنا

Computation-Efficient Knowledge Distillation via Uncertainty-Aware Mixup

281   0   0.0 ( 0 )
 نشر من قبل Guodong Xu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Knowledge distillation, which involves extracting the dark knowledge from a teacher network to guide the learning of a student network, has emerged as an essential technique for model compression and transfer learning. Unlike previous works that focus on the accuracy of student network, here we study a little-explored but important question, i.e., knowledge distillation efficiency. Our goal is to achieve a performance comparable to conventional knowledge distillation with a lower computation cost during training. We show that the UNcertainty-aware mIXup (UNIX) can serve as a clean yet effective solution. The uncertainty sampling strategy is used to evaluate the informativeness of each training sample. Adaptive mixup is applied to uncertain samples to compact knowledge. We further show that the redundancy of conventional knowledge distillation lies in the excessive learning of easy samples. By combining uncertainty and mixup, our approach reduces the redundancy and makes better use of each query to the teacher network. We validate our approach on CIFAR100 and ImageNet. Notably, with only 79% computation cost, we outperform conventional knowledge distillation on CIFAR100 and achieve a comparable result on ImageNet.

قيم البحث

اقرأ أيضاً

Calibrated estimates of uncertainty are critical for many real-world computer vision applications of deep learning. While there are several widely-used uncertainty estimation methods, dropout inference stands out for its simplicity and efficacy. This technique, however, requires multiple forward passes through the network during inference and therefore can be too resource-intensive to be deployed in real-time applications. We propose a simple, easy-to-optimize distillation method for learning the conditional predictive distribution of a pre-trained dropout model for fast, sample-free uncertainty estimation in computer vision tasks. We empirically test the effectiveness of the proposed method on both semantic segmentation and depth estimation tasks and demonstrate our method can significantly reduce the inference time, enabling real-time uncertainty quantification, while achieving improved quality of both the uncertainty estimates and predictive performance over the regular dropout model.
Despite the recent works on knowledge distillation (KD) have achieved a further improvement through elaborately modeling the decision boundary as the posterior knowledge, their performance is still dependent on the hypothesis that the target network has a powerful capacity (representation ability). In this paper, we propose a knowledge representing (KR) framework mainly focusing on modeling the parameters distribution as prior knowledge. Firstly, we suggest a knowledge aggregation scheme in order to answer how to represent the prior knowledge from teacher network. Through aggregating the parameters distribution from teacher network into more abstract level, the scheme is able to alleviate the phenomenon of residual accumulation in the deeper layers. Secondly, as the critical issue of what the most important prior knowledge is for better distilling, we design a sparse recoding penalty for constraining the student network to learn with the penalized gradients. With the proposed penalty, the student network can effectively avoid the over-regularization during knowledge distilling and converge faster. The quantitative experiments exhibit that the proposed framework achieves the state-ofthe-arts performance, even though the target network does not have the expected capacity. Moreover, the framework is flexible enough for combining with other KD methods based on the posterior knowledge.
Existing state-of-the-art human pose estimation methods require heavy computational resources for accurate predictions. One promising technique to obtain an accurate yet lightweight pose estimator is knowledge distillation, which distills the pose kn owledge from a powerful teacher model to a less-parameterized student model. However, existing pose distillation works rely on a heavy pre-trained estimator to perform knowledge transfer and require a complex two-stage learning procedure. In this work, we investigate a novel Online Knowledge Distillation framework by distilling Human Pose structure knowledge in a one-stage manner to guarantee the distillation efficiency, termed OKDHP. Specifically, OKDHP trains a single multi-branch network and acquires the predicted heatmaps from each, which are then assembled by a Feature Aggregation Unit (FAU) as the target heatmaps to teach each branch in reverse. Instead of simply averaging the heatmaps, FAU which consists of multiple parallel transformations with different receptive fields, leverages the multi-scale information, thus obtains target heatmaps with higher-quality. Specifically, the pixel-wise Kullback-Leibler (KL) divergence is utilized to minimize the discrepancy between the target heatmaps and the predicted ones, which enables the student network to learn the implicit keypoint relationship. Besides, an unbalanced OKDHP scheme is introduced to customize the student networks with different compression rates. The effectiveness of our approach is demonstrated by extensive experiments on two common benchmark datasets, MPII and COCO.
This paper addresses the problem of model compression via knowledge distillation. To this end, we propose a new knowledge distillation method based on transferring feature statistics, specifically the channel-wise mean and variance, from the teacher to the student. Our method goes beyond the standard way of enforcing the mean and variance of the student to be similar to those of the teacher through an $L_2$ loss, which we found it to be of limited effectiveness. Specifically, we propose a new loss based on adaptive instance normalization to effectively transfer the feature statistics. The main idea is to transfer the learned statistics back to the teacher via adaptive instance normalization (conditioned on the student) and let the teacher network evaluate via a loss whether the statistics learned by the student are reliably transferred. We show that our distillation method outperforms other state-of-the-art distillation methods over a large set of experimental settings including different (a) network architectures, (b) teacher-student capacities, (c) datasets, and (d) domains.
Federated learning is widely used to learn intelligent models from decentralized data. In federated learning, clients need to communicate their local model updates in each iteration of model learning. However, model updates are large in size if the m odel contains numerous parameters, and there usually needs many rounds of communication until model converges. Thus, the communication cost in federated learning can be quite heavy. In this paper, we propose a communication efficient federated learning method based on knowledge distillation. Instead of directly communicating the large models between clients and server, we propose an adaptive mutual distillation framework to reciprocally learn a student and a teacher model on each client, where only the student model is shared by different clients and updated collaboratively to reduce the communication cost. Both the teacher and student on each client are learned on its local data and the knowledge distilled from each other, where their distillation intensities are controlled by their prediction quality. To further reduce the communication cost, we propose a dynamic gradient approximation method based on singular value decomposition to approximate the exchanged gradients with dynamic precision. Extensive experiments on benchmark datasets in different tasks show that our approach can effectively reduce the communication cost and achieve competitive results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا