ﻻ يوجد ملخص باللغة العربية
In deep learning, it is usually assumed that the shape of the loss surface is fixed. Differently, a novel concept of deformation operator is first proposed in this paper to deform the loss surface, thereby improving the optimization. Deformation function, as a type of deformation operator, can improve the generalization performance. Moreover, various deformation functions are designed, and their contributions to the loss surface are further provided. Then, the original stochastic gradient descent optimizer is theoretically proved to be a flat minima filter that owns the talent to filter out the sharp minima. Furthermore, the flatter minima could be obtained by exploiting the proposed deformation functions, which is verified on CIFAR-100, with visualizations of loss landscapes near the critical points obtained by both the original optimizer and optimizer enhanced by deformation functions. The experimental results show that deformation functions do find flatter regions. Moreover, on ImageNet, CIFAR-10, and CIFAR-100, popular convolutional neural networks enhanced by deformation functions are compared with the corresponding original models, where significant improvements are observed on all of the involved models equipped with deformation functions. For example, the top-1 test accuracy of ResNet-20 on CIFAR-100 increases by 1.46%, with insignificant additional computational overhead.
In deep learning, it is usually assumed that the optimization process is conducted on a shape-fixed loss surface. Differently, we first propose a novel concept of deformation mapping in this paper to affect the behaviour of the optimizer. Vertical de
Face recognition (FR) using deep convolutional neural networks (DCNNs) has seen remarkable success in recent years. One key ingredient of DCNN-based FR is the appropriate design of a loss function that ensures discrimination between various identitie
Designing proper loss functions for vision tasks has been a long-standing research direction to advance the capability of existing models. For object detection, the well-established classification and regression loss functions have been carefully des
Deep Residual Networks present a premium in performance in comparison to conventional networks of the same depth and are trainable at extreme depths. It has recently been shown that Residual Networks behave like ensembles of relatively shallow networ
In this work we introduce Deforming Autoencoders, a generative model for images that disentangles shape from appearance in an unsupervised manner. As in the deformable template paradigm, shape is represented as a deformation between a canonical coord