ﻻ يوجد ملخص باللغة العربية
In this work we introduce Deforming Autoencoders, a generative model for images that disentangles shape from appearance in an unsupervised manner. As in the deformable template paradigm, shape is represented as a deformation between a canonical coordinate system (`template) and an observed image, while appearance is modeled in `canonical, template, coordinates, thus discarding variability due to deformations. We introduce novel techniques that allow this approach to be deployed in the setting of autoencoders and show that this method can be used for unsupervised group-wise image alignment. We show experiments with expression morphing in humans, hands, and digits, face manipulation, such as shape and appearance interpolation, as well as unsupervised landmark localization. A more powerful form of unsupervised disentangling becomes possible in template coordinates, allowing us to successfully decompose face images into shading and albedo, and further manipulate face images.
We study the problem of unsupervised discovery and segmentation of object parts, which, as an intermediate local representation, are capable of finding intrinsic object structure and providing more explainable recognition results. Recent unsupervised
We consider the novel task of learning disentangled representations of object shape and appearance across multiple domains (e.g., dogs and cars). The goal is to learn a generative model that learns an intermediate distribution, which borrows a subset
There have been a fairly of research interests in exploring the disentanglement of appearance and shape from human images. Most existing endeavours pursuit this goal by either using training images with annotations or regulating the training process
Mesh autoencoders are commonly used for dimensionality reduction, sampling and mesh modeling. We propose a general-purpose DEep MEsh Autoencoder (DEMEA) which adds a novel embedded deformation layer to a graph-convolutional mesh autoencoder. The embe
Creating realistic human videos entails the challenge of being able to simultaneously generate both appearance, as well as motion. To tackle this challenge, we introduce G$^{3}$AN, a novel spatio-temporal generative model, which seeks to capture the