ﻻ يوجد ملخص باللغة العربية
Deep Residual Networks present a premium in performance in comparison to conventional networks of the same depth and are trainable at extreme depths. It has recently been shown that Residual Networks behave like ensembles of relatively shallow networks. We show that these ensembles are dynamic: while initially the virtual ensemble is mostly at depths lower than half the networks depth, as training progresses, it becomes deeper and deeper. The main mechanism that controls the dynamic ensemble behavior is the scaling introduced, e.g., by the Batch Normalization technique. We explain this behavior and demonstrate the driving force behind it. As a main tool in our analysis, we employ generalized spin glass models, which we also use in order to study the number of critical points in the optimization of Residual Networks.
We present Sandwich Batch Normalization (SaBN), an embarrassingly easy improvement of Batch Normalization (BN) with only a few lines of code changes. SaBN is motivated by addressing the inherent feature distribution heterogeneity that one can be iden
Batch Normalization (BN) is a popular technique for training Deep Neural Networks (DNNs). BN uses scaling and shifting to normalize activations of mini-batches to accelerate convergence and improve generalization. The recently proposed Iterative Norm
Batch normalization has been widely used to improve optimization in deep neural networks. While the uncertainty in batch statistics can act as a regularizer, using these dataset statistics specific to the training set impairs generalization in certai
Generative adversarial networks (GANs) are highly effective unsupervised learning frameworks that can generate very sharp data, even for data such as images with complex, highly multimodal distributions. However GANs are known to be very hard to trai
As an indispensable component, Batch Normalization (BN) has successfully improved the training of deep neural networks (DNNs) with mini-batches, by normalizing the distribution of the internal representation for each hidden layer. However, the effect