ﻻ يوجد ملخص باللغة العربية
The Muon Scattering Experiment at the Paul Scherrer Institut uses a mixed beam of electrons, muons, and pions, necessitating precise timing to identify the beam particles and reactions they cause. We describe the design and performance of three timing detectors using plastic scintillator read out with silicon photomultipliers that have been built for the experiment. The Beam Hodoscope, upstream of the scattering target, counts the beam flux and precisely times beam particles both to identify species and provide a starting time for time-of-flight measurements. The Beam Monitor, downstream of the scattering target, counts the unscattered beam flux, helps identify background in scattering events, and precisely times beam particles for time-of-flight measurements. The Beam Focus Monitor, mounted on the target ladder under the liquid hydrogen target inside the target vacuum chamber, is used in dedicated runs to sample the beam spot at three points near the target center, where the beam should be focused.
A 280 ml liquid hydrogen target has been constructed and tested for the MUSE experiment at PSI to investigate the proton charge radius via simultaneous measurement of elastic muon-proton and elastic electron-proton scattering. To control systematic u
With the upgrade of the RPCs [1]-[2] and the increase of its performances, the study and the optimization of the read-out panel is necessary in order to maintain the signal integrity and to reduce the intrinsic crosstalk. Through Electromagnetic Simu
The Cherenkov Imaging Telescope Integrated Read Out Chip (CITIROC) is a 32-channel fully analogue front-end ASIC dedicated to the read-out of silicon photo-multiplier (SiPM) sensors that can be used in a variety of experiments with different applicat
The suppression of spurious events in the region of interest for neutrinoless double beta decay will play a major role in next generation experiments. The background of detectors based on the technology of cryogenic calorimeters is expected to be dom
We report on the strategy used to optimize the sensitivity of our search for a neutron electric dipole moment at the Paul Scherrer Institute. Measurements were made upon ultracold neutrons stored within a single chamber at the heart of our apparatus.