ﻻ يوجد ملخص باللغة العربية
The Cherenkov Imaging Telescope Integrated Read Out Chip (CITIROC) is a 32-channel fully analogue front-end ASIC dedicated to the read-out of silicon photo-multiplier (SiPM) sensors that can be used in a variety of experiments with different applications: nuclear physics, medical imaging, astrophysics, etc. It has been adopted as front-end for the focal plane detectors of the ASTRI-Horn Cherenkov telescope and, in this context, it was modified implementing the peak detector reading mode to satisfy the instrument requirements. For each channel, two parallel AC coupled voltage preamplifiers, one for the high gain and one for the low gain, ensure the read-out of the charge from 160 fC to 320 pC (i.e. from 1 to 2000 photo-electrons with SiPM gain = 10$^{6}$, with a photo-electron to noise ratio of 10). The signal in each of the two preamplifier chains is shaped and the maximum value is captured by activating the peak detector for an adjustable time interval. In this work, we illustrate the peak detector operation mode and, in particular, how this can be used to calibrate the SiPM gain without the need of external light sources. To demonstrate the validity of the method, we also present and discuss some laboratory measurements.
The Muon Scattering Experiment at the Paul Scherrer Institut uses a mixed beam of electrons, muons, and pions, necessitating precise timing to identify the beam particles and reactions they cause. We describe the design and performance of three timin
The Cherenkov Imaging Telescope Integrated Read Out Chip, CITIROC, is a chip adopted as the front-end of the camera at the focal plane of the imaging Cherenkov ASTRI dual-mirror small size telescope (ASTRI SST-2M) prototype. This paper presents the r
Photomultipliers are commonly used in commercial PET scanner as devices which convert light produced in scintillator by gamma quanta from positron-electron annihilation into electrical signal. For proper analysis of obtained electrical signal, a phot
A new type of radiation detector based on a spherical geometry is presented. The detector consists of a large spherical gas volume with a central electrode forming a radial electric field. Charges deposited in the conversion volume drift to the centr
A 1-meter-long trapezoidal Triple-GEM detector with wide readout strips was tested in hadron beams at the Fermilab Test Beam Facility in October 2013. The readout strips have a special zigzag geometry and run along the radial direction with an azimut