ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimization of RPCs read-out panel with electromagnetic simulation

72   0   0.0 ( 0 )
 نشر من قبل Elio Alunno Camelia
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

With the upgrade of the RPCs [1]-[2] and the increase of its performances, the study and the optimization of the read-out panel is necessary in order to maintain the signal integrity and to reduce the intrinsic crosstalk. Through Electromagnetic Simulation, performed with CST Studio Suite, new panels design are tested and their crosstalk property are studied. The behavior of different type of panel is shown, in particular a panel with the decoupling strip connected through their characteristic impedance to the ground plane is simulated.



قيم البحث

اقرأ أيضاً

The Muon Scattering Experiment at the Paul Scherrer Institut uses a mixed beam of electrons, muons, and pions, necessitating precise timing to identify the beam particles and reactions they cause. We describe the design and performance of three timin g detectors using plastic scintillator read out with silicon photomultipliers that have been built for the experiment. The Beam Hodoscope, upstream of the scattering target, counts the beam flux and precisely times beam particles both to identify species and provide a starting time for time-of-flight measurements. The Beam Monitor, downstream of the scattering target, counts the unscattered beam flux, helps identify background in scattering events, and precisely times beam particles for time-of-flight measurements. The Beam Focus Monitor, mounted on the target ladder under the liquid hydrogen target inside the target vacuum chamber, is used in dedicated runs to sample the beam spot at three points near the target center, where the beam should be focused.
The suppression of spurious events in the region of interest for neutrinoless double beta decay will play a major role in next generation experiments. The background of detectors based on the technology of cryogenic calorimeters is expected to be dom inated by {alpha} particles, that could be disentangled from double beta decay signals by exploiting the difference in the emission of the scintillation light. CUPID-0, an array of enriched Zn$^{82}$Se scintillating calorimeters, is the first large mass demonstrator of this technology. The detector started data-taking in 2017 at the Laboratori Nazionali del Gran Sasso with the aim of proving that dual read-out of light and heat allows for an efficient suppression of the {alpha} background. In this paper we describe the software tools we developed for the analysis of scintillating calorimeters and we demonstrate that this technology allows to reach an unprecedented background for cryogenic calorimeters.
A large acceptance scintillator detector with wavelength shifting optical fibre readout has been designed and built to detect the decay particles of $eta$-nucleus bound system (the so-called $eta$-mesic nuclei), namely, protons and pions. The detecto r, named as ENSTAR detector, consists of 122 pieces of plastic scintillator of various shapes and sizes, which are arranged in a cylindrical geometry to provide particle identification, energy loss and coarse position information for these particles. A solid angle coverage of $sim$95% of total 4$pi$ is obtained in the present design of the detector. Monte Carlo phase space calculations performed to simulate the formation and decay of $eta$-mesic nuclei suggest that its decay particles, the protons and pions are emitted with an opening angle of 150$^circ pm 20^circ$, and with energies in the range of 25 to 300 MeV and 225 to 450 MeV respectively. The detailed GEANT simulations show that $sim$ 80 % of the decay particles (protons and pions) can be detected within ENSTAR. Several test measurements using alpha source, cosmic-ray muons etc. have been carried out to study the response of ENSTAR scintillator pieces. The in-beam tests of fully assembled detector with proton beam of momentum 870 MeV/c from the Cooler synchrotron COSY have been performed. The test results show that the scintillator fiber design chosen for the detector has performed satisfactorily well. The present article describes the detector design, simulation studies, construction details and test results.
A 1-meter-long trapezoidal Triple-GEM detector with wide readout strips was tested in hadron beams at the Fermilab Test Beam Facility in October 2013. The readout strips have a special zigzag geometry and run along the radial direction with an azimut hal pitch of 1.37 mrad to measure the azimuthal phi-coordinate of incident particles. The zigzag geometry of the readout reduces the required number of electronic channels by a factor of three compared to conventional straight readout strips while preserving good angular resolution. The average crosstalk between zigzag strips is measured to be an acceptable 5.5%. The detection efficiency of the detector is (98.4+-0.2)%. When the non-linearity of the zigzag-strip response is corrected with track information, the angular resolution is measured to be (193+-3) urad, which corresponds to 14% of the angular strip pitch. Multiple Coulomb scattering effects are fully taken into account in the data analysis with the help of a stand-alone Geant4 simulation that estimates interpolated track errors.
The Time Projection method is an ideal candidate to track low energy release particles. Large volumes can be readout by means of a moderate number of channels providing a complete 3D reconstruction of the charged tracks within the sensitive volume. I t allows the measurement not only of the total released energy but also of the energy release density along the tracks that can be very useful for particle identification and to solve the head-tail ambiguity of the tracks. Moreover, gas represents a very interesting target to study Dark Matter interactions. In gas, nuclear recoils can travel enough to give rise to tracks long enough to be acquired and reconstructed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا