ﻻ يوجد ملخص باللغة العربية
Given a colored point set in the plane, a perfect rainbow polygon is a simple polygon that contains exactly one point of each color, either in its interior or on its boundary. Let $operatorname{rb-index}(S)$ denote the smallest size of a perfect rainbow polygon for a colored point set $S$, and let $operatorname{rb-index}(k)$ be the maximum of $operatorname{rb-index}(S)$ over all $k$-colored point sets in general position; that is, every $k$-colored point set $S$ has a perfect rainbow polygon with at most $operatorname{rb-index}(k)$ vertices. In this paper, we determine the values of $operatorname{rb-index}(k)$ up to $k=7$, which is the first case where $operatorname{rb-index}(k) eq k$, and we prove that for $kge 5$, [ frac{40lfloor (k-1)/2 rfloor -8}{19} %Birgit: leqoperatorname{rb-index}(k)leq 10 bigglfloorfrac{k}{7}biggrfloor + 11. ] Furthermore, for a $k$-colored set of $n$ points in the plane in general position, a perfect rainbow polygon with at most $10 lfloorfrac{k}{7}rfloor + 11$ vertices can be computed in $O(nlog n)$ time.
We consider the construction of a polygon $P$ with $n$ vertices whose turning angles at the vertices are given by a sequence $A=(alpha_0,ldots, alpha_{n-1})$, $alpha_iin (-pi,pi)$, for $iin{0,ldots, n-1}$. The problem of realizing $A$ by a polygon ca
Let $S$ be a finite set of geometric objects partitioned into classes or emph{colors}. A subset $Ssubseteq S$ is said to be emph{balanced} if $S$ contains the same amount of elements of $S$ from each of the colors. We study several problems on partit
K{a}rolyi, Pach, and T{o}th proved that every 2-edge-colored straight-line drawing of the complete graph contains a monochromatic plane spanning tree. It is open if this statement generalizes to other classes of drawings, specifically, to simple draw
We give an overview of the 2020 Computational Geometry Challenge, which targeted the problem of partitioning the convex hull of a given planar point set P into the smallest number of convex faces, such that no point of P is contained in the interior of a face.
We study several problems concerning convex polygons whose vertices lie in a Cartesian product (for short, grid) of two sets of n real numbers. First, we prove that every such grid contains a convex polygon with $Omega$(log n) vertices and that this