ﻻ يوجد ملخص باللغة العربية
Let $S$ be a finite set of geometric objects partitioned into classes or emph{colors}. A subset $Ssubseteq S$ is said to be emph{balanced} if $S$ contains the same amount of elements of $S$ from each of the colors. We study several problems on partitioning $3$-colored sets of points and lines in the plane into two balanced subsets: (a) We prove that for every 3-colored arrangement of lines there exists a segment that intersects exactly one line of each color, and that when there are $2m$ lines of each color, there is a segment intercepting $m$ lines of each color. (b) Given $n$ red points, $n$ blue points and $n$ green points on any closed Jordan curve $gamma$, we show that for every integer $k$ with $0 leq k leq n$ there is a pair of disjoint intervals on $gamma$ whose union contains exactly $k$ points of each color. (c) Given a set $S$ of $n$ red points, $n$ blue points and $n$ green points in the integer lattice satisfying certain constraints, there exist two rays with common apex, one vertical and one horizontal, whose union splits the plane into two regions, each one containing a balanced subset of $S$.
Given a colored point set in the plane, a perfect rainbow polygon is a simple polygon that contains exactly one point of each color, either in its interior or on its boundary. Let $operatorname{rb-index}(S)$ denote the smallest size of a perfect rain
We give an overview of the 2020 Computational Geometry Challenge, which targeted the problem of partitioning the convex hull of a given planar point set P into the smallest number of convex faces, such that no point of P is contained in the interior of a face.
K{a}rolyi, Pach, and T{o}th proved that every 2-edge-colored straight-line drawing of the complete graph contains a monochromatic plane spanning tree. It is open if this statement generalizes to other classes of drawings, specifically, to simple draw
Inspired by Andrews 2-colored generalized Frobenius partitions, we consider certain weighted 7-colored partition functions and establish some interesting Ramanujan-type identities and congruences. Moreover, we provide combinatorial interpretations of