ﻻ يوجد ملخص باللغة العربية
K{a}rolyi, Pach, and T{o}th proved that every 2-edge-colored straight-line drawing of the complete graph contains a monochromatic plane spanning tree. It is open if this statement generalizes to other classes of drawings, specifically, to simple drawings of the complete graph. These are drawings where edges are represented by Jordan arcs, any two of which intersect at most once. We present two partial results towards such a generalization. First, we show that the statement holds for cylindrical simple drawings. (In a cylindrical drawing, all vertices are placed on two concentric circles and no edge crosses either circle.) Second, we introduce a relaxation of the problem in which the graph is $k$-edge-colored, and the target structure must be hypochromatic, that is, avoid (at least) one color class. In this setting, we show that every $lceil (n+5)/6rceil$-edge-colored monotone simple drawing of $K_n$ contains a hypochromatic plane spanning tree. (In a monotone drawing, every edge is represented as an $x$-monotone curve.)
Partial edge drawing (PED) is a drawing style for non-planar graphs, in which edges are drawn only partially as pairs of opposing stubs on the respective end-vertices. In a PED, by erasing the central parts of edges, all edge crossings and the result
Given a colored point set in the plane, a perfect rainbow polygon is a simple polygon that contains exactly one point of each color, either in its interior or on its boundary. Let $operatorname{rb-index}(S)$ denote the smallest size of a perfect rain
In studying properties of simple drawings of the complete graph in the sphere, two natural questions arose for us: can an edge have multiple segments on the boundary of the same face? and is each face the intersection of sides of 3-cycles? The second
The Harary--Hill conjecture, still open after more than 50 years, asserts that the crossing number of the complete graph $K_n$ is $ H(n) = frac 1 4 leftlfloorfrac{mathstrut n}{mathstrut 2}rightrfloor leftlfloorfrac{mathstrut n-1}{mathstrut 2}rightrfl
We study an algorithmic problem that is motivated by ink minimization for sparse set visualizations. Our input is a set of points in the plane which are either blue, red, or purple. Blue points belong exclusively to the blue set, red points belong ex