ترغب بنشر مسار تعليمي؟ اضغط هنا

Polygons with Prescribed Angles in 2D and 3D

147   0   0.0 ( 0 )
 نشر من قبل Radoslav Fulek
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the construction of a polygon $P$ with $n$ vertices whose turning angles at the vertices are given by a sequence $A=(alpha_0,ldots, alpha_{n-1})$, $alpha_iin (-pi,pi)$, for $iin{0,ldots, n-1}$. The problem of realizing $A$ by a polygon can be seen as that of constructing a straight-line drawing of a graph with prescribed angles at vertices, and hence, it is a special case of the well studied problem of constructing an emph{angle graph}. In 2D, we characterize sequences $A$ for which every generic polygon $Psubset mathbb{R}^2$ realizing $A$ has at least $c$ crossings, for every $cin mathbb{N}$, and describe an efficient algorithm that constructs, for a given sequence $A$, a generic polygon $Psubset mathbb{R}^2$ that realizes $A$ with the minimum number of crossings. In 3D, we describe an efficient algorithm that tests whether a given sequence $A$ can be realized by a (not necessarily generic) polygon $Psubset mathbb{R}^3$, and for every realizable sequence the algorithm finds a realization.



قيم البحث

اقرأ أيضاً

Given a colored point set in the plane, a perfect rainbow polygon is a simple polygon that contains exactly one point of each color, either in its interior or on its boundary. Let $operatorname{rb-index}(S)$ denote the smallest size of a perfect rain bow polygon for a colored point set $S$, and let $operatorname{rb-index}(k)$ be the maximum of $operatorname{rb-index}(S)$ over all $k$-colored point sets in general position; that is, every $k$-colored point set $S$ has a perfect rainbow polygon with at most $operatorname{rb-index}(k)$ vertices. In this paper, we determine the values of $operatorname{rb-index}(k)$ up to $k=7$, which is the first case where $operatorname{rb-index}(k) eq k$, and we prove that for $kge 5$, [ frac{40lfloor (k-1)/2 rfloor -8}{19} %Birgit: leqoperatorname{rb-index}(k)leq 10 bigglfloorfrac{k}{7}biggrfloor + 11. ] Furthermore, for a $k$-colored set of $n$ points in the plane in general position, a perfect rainbow polygon with at most $10 lfloorfrac{k}{7}rfloor + 11$ vertices can be computed in $O(nlog n)$ time.
When can a plane graph with prescribed edge lengths and prescribed angles (from among ${0,180^circ, 360^circ$}) be folded flat to lie in an infinitesimally thin line, without crossings? This problem generalizes the classic theory of single-vertex fla t origami with prescribed mountain-valley assignment, which corresponds to the case of a cycle graph. We characterize such flat-foldable plane graphs by two obviously necessary but also sufficient conditions, proving a conjecture made in 2001: the angles at each vertex should sum to $360^circ$, and every face of the graph must itself be flat foldable. This characterization leads to a linear-time algorithm for testing flat foldability of plane graphs with prescribed edge lengths and angles, and a polynomial-time algorithm for counting the number of distinct folded states.
We characterize the triples of interior angles that are possible in non-self-crossing triangles with circular-arc sides, and we prove that a given cyclic sequence of angles can be realized by a non-self-crossing polygon with circular-arc sides whenev er all angles are at most pi. As a consequence of these results, we prove that every cactus has a planar Lombardi drawing (a drawing with edges depicted as circular arcs, meeting at equal angles at each vertex) for its natural embedding in which every cycle of the cactus is a face of the drawing. However, there exist planar embeddings of cacti that do not have planar Lombardi drawings.
We study several problems concerning convex polygons whose vertices lie in a Cartesian product (for short, grid) of two sets of n real numbers. First, we prove that every such grid contains a convex polygon with $Omega$(log n) vertices and that this bound is tight up to a constant factor. We generalize this result to d dimensions (for a fixed d $in$ N), and obtain a tight lower bound of $Omega$(log d--1 n) for the maximum number of points in convex position in a d-dimensional grid. Second, we present polynomial-time algorithms for computing the largest convex chain in a grid that contains no two points of the same x-or y-coordinate. We show how to efficiently approximate the maximum size of a supported convex polygon up to a factor of 2. Finally, we present exponential bounds on the maximum number of convex polygons in these grids, and for some restricted variants. These bounds are tight up to polynomial factors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا