ترغب بنشر مسار تعليمي؟ اضغط هنا

Sudo rm -rf: Efficient Networks for Universal Audio Source Separation

99   0   0.0 ( 0 )
 نشر من قبل Efthymios Tzinis
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we present an efficient neural network for end-to-end general purpose audio source separation. Specifically, the backbone structure of this convolutional network is the SUccessive DOwnsampling and Resampling of Multi-Resolution Features (SuDoRMRF) as well as their aggregation which is performed through simple one-dimensional convolutions. In this way, we are able to obtain high quality audio source separation with limited number of floating point operations, memory requirements, number of parameters and latency. Our experiments on both speech and environmental sound separation datasets show that SuDoRMRF performs comparably and even surpasses various state-of-the-art approaches with significantly higher computational resource requirements.



قيم البحث

اقرأ أيضاً

Recent progress in audio source separation lead by deep learning has enabled many neural network models to provide robust solutions to this fundamental estimation problem. In this study, we provide a family of efficient neural network architectures f or general purpose audio source separation while focusing on multiple computational aspects that hinder the application of neural networks in real-world scenarios. The backbone structure of this convolutional network is the SUccessive DOwnsampling and Resampling of Multi-Resolution Features (SuDoRM-RF) as well as their aggregation which is performed through simple one-dimensional convolutions. This mechanism enables our models to obtain high fidelity signal separation in a wide variety of settings where variable number of sources are present and with limited computational resources (e.g. floating point operations, memory footprint, number of parameters and latency). Our experiments show that SuDoRM-RF models perform comparably and even surpass several state-of-the-art benchmarks with significantly higher computational resource requirements. The causal variation of SuDoRM-RF is able to obtain competitive performance in real-time speech separation of around 10dB scale-invariant signal-to-distortion ratio improvement (SI-SDRi) while remaining up to 20 times faster than real-time on a laptop device.
An attacker may use a variety of techniques to fool an automatic speaker verification system into accepting them as a genuine user. Anti-spoofing methods meanwhile aim to make the system robust against such attacks. The ASVspoof 2017 Challenge focuse d specifically on replay attacks, with the intention of measuring the limits of replay attack detection as well as developing countermeasures against them. In this work, we propose our replay attacks detection system - Attentive Filtering Network, which is composed of an attention-based filtering mechanism that enhances feature representations in both the frequency and time domains, and a ResNet-based classifier. We show that the network enables us to visualize the automatically acquired feature representations that are helpful for spoofing detection. Attentive Filtering Network attains an evaluation EER of 8.99$%$ on the ASVspoof 2017 Version 2.0 dataset. With system fusion, our best system further obtains a 30$%$ relative improvement over the ASVspoof 2017 enhanced baseline system.
End-to-end approaches for automatic speech recognition (ASR) benefit from directly modeling the probability of the word sequence given the input audio stream in a single neural network. However, compared to conventional ASR systems, these models typi cally require more data to achieve comparable results. Well-known model adaptation techniques, to account for domain and style adaptation, are not easily applicable to end-to-end systems. Conventional HMM-based systems, on the other hand, have been optimized for various production environments and use cases. In this work, we propose to combine the benefits of end-to-end approaches with a conventional system using an attention-based discriminative language model that learns to rescore the output of a first-pass ASR system. We show that learning to rescore a list of potential ASR outputs is much simpler than learning to generate the hypothesis. The proposed model results in 8% improvement in word error rate even when the amount of training data is a fraction of data used for training the first-pass system.
In this work, we propose DiffWave, a versatile diffusion probabilistic model for conditional and unconditional waveform generation. The model is non-autoregressive, and converts the white noise signal into structured waveform through a Markov chain w ith a constant number of steps at synthesis. It is efficiently trained by optimizing a variant of variational bound on the data likelihood. DiffWave produces high-fidelity audios in different waveform generation tasks, including neural vocoding conditioned on mel spectrogram, class-conditional generation, and unconditional generation. We demonstrate that DiffWave matches a strong WaveNet vocoder in terms of speech quality (MOS: 4.44 versus 4.43), while synthesizing orders of magnitude faster. In particular, it significantly outperforms autoregressive and GAN-based waveform models in the challenging unconditional generation task in terms of audio quality and sample diversity from various automatic and human evaluations.
While deep neural networks have shown powerful performance in many audio applications, their large computation and memory demand has been a challenge for real-time processing. In this paper, we study the impact of scaling the precision of neural netw orks on the performance of two common audio processing tasks, namely, voice-activity detection and single-channel speech enhancement. We determine the optimal pair of weight/neuron bit precision by exploring its impact on both the performance and processing time. Through experiments conducted with real user data, we demonstrate that deep neural networks that use lower bit precision significantly reduce the processing time (up to 30x). However, their performance impact is low (< 3.14%) only in the case of classification tasks such as those present in voice activity detection.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا