ﻻ يوجد ملخص باللغة العربية
End-to-end approaches for automatic speech recognition (ASR) benefit from directly modeling the probability of the word sequence given the input audio stream in a single neural network. However, compared to conventional ASR systems, these models typically require more data to achieve comparable results. Well-known model adaptation techniques, to account for domain and style adaptation, are not easily applicable to end-to-end systems. Conventional HMM-based systems, on the other hand, have been optimized for various production environments and use cases. In this work, we propose to combine the benefits of end-to-end approaches with a conventional system using an attention-based discriminative language model that learns to rescore the output of a first-pass ASR system. We show that learning to rescore a list of potential ASR outputs is much simpler than learning to generate the hypothesis. The proposed model results in 8% improvement in word error rate even when the amount of training data is a fraction of data used for training the first-pass system.
We present an end-to-end speech recognition model that learns interaction between two speakers based on the turn-changing information. Unlike conventional speech recognition models, our model exploits two speakers history of conversational-context in
In this work, we propose DiffWave, a versatile diffusion probabilistic model for conditional and unconditional waveform generation. The model is non-autoregressive, and converts the white noise signal into structured waveform through a Markov chain w
Videos uploaded on social media are often accompanied with textual descriptions. In building automatic speech recognition (ASR) systems for videos, we can exploit the contextual information provided by such video metadata. In this paper, we explore A
End-to-end (E2E) systems for automatic speech recognition (ASR), such as RNN Transducer (RNN-T) and Listen-Attend-Spell (LAS) blend the individual components of a traditional hybrid ASR system - acoustic model, language model, pronunciation model - i
Whereas conventional spoken language understanding (SLU) systems map speech to text, and then text to intent, end-to-end SLU systems map speech directly to intent through a single trainable model. Achieving high accuracy with these end-to-end models