ﻻ يوجد ملخص باللغة العربية
An attacker may use a variety of techniques to fool an automatic speaker verification system into accepting them as a genuine user. Anti-spoofing methods meanwhile aim to make the system robust against such attacks. The ASVspoof 2017 Challenge focused specifically on replay attacks, with the intention of measuring the limits of replay attack detection as well as developing countermeasures against them. In this work, we propose our replay attacks detection system - Attentive Filtering Network, which is composed of an attention-based filtering mechanism that enhances feature representations in both the frequency and time domains, and a ResNet-based classifier. We show that the network enables us to visualize the automatically acquired feature representations that are helpful for spoofing detection. Attentive Filtering Network attains an evaluation EER of 8.99$%$ on the ASVspoof 2017 Version 2.0 dataset. With system fusion, our best system further obtains a 30$%$ relative improvement over the ASVspoof 2017 enhanced baseline system.
Automatic speaker verification systems are vulnerable to audio replay attacks which bypass security by replaying recordings of authorized speakers. Replay attack detection (RA) detection systems built upon Residual Neural Networks (ResNet)s have yiel
In this study, we analyze the role of various categories of subsidiary information in conducting replay attack spoofing detection: `Room Size, `Reverberation, `Speaker-to-ASV distance, `Attacker-to-Speaker distance, and `Replay Device Quality. As a m
In this study, we concentrate on replacing the process of extracting hand-crafted acoustic feature with end-to-end DNN using complementary high-resolution spectrograms. As a result of advance in audio devices, typical characteristics of a replayed sp
High quality labeled datasets have allowed deep learning to achieve impressive results on many sound analysis tasks. Yet, it is labor-intensive to accurately annotate large amount of audio data, and the dataset may contain noisy labels in the practic
Automatic lyrics to polyphonic audio alignment is a challenging task not only because the vocals are corrupted by background music, but also there is a lack of annotated polyphonic corpus for effective acoustic modeling. In this work, we propose (1)