ﻻ يوجد ملخص باللغة العربية
The excess of electron recoil events seen by the XENON1T experiment has been interpreted as a potential signal of axion-like particles (ALPs), either produced in the Sun, or constituting part of the dark matter halo of the Milky Way. It has also been explained as a consequence of trace amounts of tritium in the experiment. We consider the evidence for the solar and dark-matter ALP hypotheses from the combination of XENON1T data and multiple astrophysical probes, including horizontal branch stars, red giants, and white dwarfs. We briefly address the influence of ALP decays and supernova cooling. While the different datasets are in clear tension for the case of solar ALPs, all measurements can be simultaneously accommodated for the case of a sub-dominant fraction of dark-matter ALPs. Nevertheless, this solution requires the tuning of several a priori unknown parameters, such that for our choices of priors a Bayesian analysis shows no strong preference for the ALP interpretation of the XENON1T excess over the background hypothesis.
The first part reviews the working mechanisms, capabilities and performance of axion helioscopes, including the achieved results so far. The 2nd part is observationally driven. New simulation results obtained with the Geant4 code reconstruct spectral
The working principle of axion helioscopes can be behind unexpected solar X-ray emission, being associated with solar magnetic fields, which become the catalyst. Solar axion signals can be transient brightenings as well as continuous radiation. The e
The first searches for axions and axion-like particles with the Large Underground Xenon (LUX) experiment are presented. Under the assumption of an axio-electric interaction in xenon, the coupling constant between axions and electrons, gAe is tested,
We investigate the possibility that axion-like particles (ALPs) with various potentials account for the isotropic birefringence recently reported by analyzing the Planck 2018 polarization data. For the quadratic and cosine potentials, we obtain lower
Coupling of axion-like particles (ALPs) to photons in the presence of background magnetic field affects propagation of gamma-rays through magnetized environments. This results in modification in the gamma-ray spectra of sources in or behind galaxy cl