ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of isotropic cosmic birefringence and its implications for axion-like particles including dark energy

127   0   0.0 ( 0 )
 نشر من قبل Kai Murai
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the possibility that axion-like particles (ALPs) with various potentials account for the isotropic birefringence recently reported by analyzing the Planck 2018 polarization data. For the quadratic and cosine potentials, we obtain lower bounds on the mass, coupling constant to photon $g$, abundance and equation of state of the ALP to produce the observed birefringence. Especially when the ALP is responsible for dark energy, it is possible to probe the tiny deviation of dark energy equation of state from $-1$ through the cosmic birefringence. We also explore ALPs working as early dark energy (EDE), which alleviates the Hubble tension problem. Since the other parameters are limited by the EDE requirements, we narrow down the ALP-photon coupling to $10^{-19}, {rm GeV}^{-1}lesssim glesssim 10^{-16}, {rm GeV}^{-1}$ for the decay constant $f=M_mathrm{pl}$. Therefore, the Hubble tension and the isotropic birefringence imply that $g$ is typically the order of $f^{-1}$, which is a non-trivial coincidence.

قيم البحث

اقرأ أيضاً

Axion-like particles are dark matter candidates motivated by the Peccei-Quinn mechanism and also occur in effective field theories where their masses and photon couplings are independent. We estimate the dispersion of circularly polarized photons in a background of oscillating axion-like particles (ALPs) with the standard $g_{agamma},a,F_{mu u}tilde F^{mu u}/4$ coupling to photons. This leads to birefringence or rotation of linear polarization by ALP dark matter. Cosmic microwave background (CMB) birefringence limits $Delta alpha lesssim (1.0)^circ$ enable us to constrain the axion-photon coupling $g_{agamma} lesssim 10^{-17}-10^{-12},{rm GeV}^{-1}$, for ultra-light ALP masses $m_a sim 10^{-27} - 10^{-24}$ eV. This improves upon previous axion-photon coupling limits by up to four orders of magnitude. Future CMB observations could tighten limits by another one to two orders.
Taking the recently reported non-zero rotation angle of the cosmic microwave background (CMB) linear polarization $beta=0.35pm0.14{rm, deg}$ as the hint for a pseudo Nambu-Goldstone boson quintessence dark energy (DE), we study the electroweak (EW) a xion quintessence DE model where the axion mass is generated by the EW instantons. We find that the observed value of $beta$ implies a non-trivial $U(1)$ electromagnetic anomaly coefficient ($c_{gamma}$), once the current constraint on the DE equation of state is also taken into account. With the aid of the hypothetical high energy structure of the model inspired by the experimentally inferred $c_{gamma}$, the model is shown to be able to make prediction for the current equation of state ($w_{rm DE,0}$) of the quintessence DE. This is expected to make our scenario distinguishable in comparison with the cosmological constant ($w=-1$) and testable in future when the error in the future measurement of $w_{rm DE,0}$ is reduced to $mathcal{O}(1)%$ level ($delta w=mathcal{O}(10^{-2})$).
Cosmological observations are used to test for imprints of an ultra-light axion-like field (ULA), with a range of potentials $V(phi)propto[1-cos(phi/f)]^n$ set by the axion-field value $phi$ and decay constant $f$. Scalar field dynamics dictate that the field is initially frozen and then begins to oscillate around its minimum when the Hubble parameter drops below some critical value. For $n!=!1$, once dynamical, the axion energy density dilutes as matter; for $n!=!2$ it dilutes as radiation and for $n!=!3$ it dilutes faster than radiation. Both the homogeneous evolution of the ULA and the dynamics of its linear perturbations are included, using an effective fluid approximation generalized from the usual $n=1$ case. ULA models are parameterized by the redshift $z_c$ when the field becomes dynamical, the fractional energy density $f_{z_c} equiv Omega_a(z_c)/Omega_{rm tot}(z_c)$ in the axion field at $z_c$, and the effective sound speed $c_s^2$. Using Planck, BAO and JLA data, constraints on $f_{z_c}$ are obtained. ULAs are degenerate with dark energy for all three potentials if $1+z_c lesssim 10$. When $3times10^4 gtrsim 1+z_c gtrsim 10 $, $f_{z_c}$ is constrained to be $ lesssim 0.004 $ for $n=1$ and $f_{z_c} lesssim 0.02 $ for the other two potentials. The constraints then relax with increasing $z_c$. These results strongly constrain ULAs as a resolution to cosmological tensions, such as discrepant measurements of the Hubble constant, or the EDGES measurement of the global 21 cm signal.
294 - D.S. Akerib , S. Alsum , C. Aquino 2017
The first searches for axions and axion-like particles with the Large Underground Xenon (LUX) experiment are presented. Under the assumption of an axio-electric interaction in xenon, the coupling constant between axions and electrons, gAe is tested, using data collected in 2013 with an exposure totalling 95 live-days $times$ 118 kg. A double-sided, profile likelihood ratio statistic test excludes gAe larger than 3.5 $times$ 10$^{-12}$ (90% C.L.) for solar axions. Assuming the DFSZ theoretical description, the upper limit in coupling corresponds to an upper limit on axion mass of 0.12 eV/c$^{2}$, while for the KSVZ description masses above 36.6 eV/c$^{2}$ are excluded. For galactic axion-like particles, values of gAe larger than 4.2 $times$ 10$^{-13}$ are excluded for particle masses in the range 1-16 keV/c$^{2}$. These are the most stringent constraints to date for these interactions.
Axion-Like Particles (ALPs) are predicted by many extensions of the Standard Model and give rise to characteristic dimming and polarization effects in a light beam travelling in a magnetic field. In this Letter, we demonstrate that photon-ALP mixing in cosmic magnetic fields produces an observable distortion in the energy spectra of distant gamma-ray sources (like AGN) for ranges of the ALP parameters allowed by all available constraints. The resulting effect is expected to show up in the energy band 100 MeV - 100 GeV, and so it can be serched with the upcoming GLAST mission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا