ﻻ يوجد ملخص باللغة العربية
The first part reviews the working mechanisms, capabilities and performance of axion helioscopes, including the achieved results so far. The 2nd part is observationally driven. New simulation results obtained with the Geant4 code reconstruct spectral shape of solar X-ray spectra, and their isotropic emission and lateral size. The derived rst mass of the axion(-like) particles is ~10meV. The axion interaction with magnetic field gradient is a generic theoretical suggestion that could reconcile present limits with relevant solar X-ray activity. A short outlook of the experimentally expanding solar axion field is given.
The working principle of axion helioscopes can be behind unexpected solar X-ray emission, being associated with solar magnetic fields, which become the catalyst. Solar axion signals can be transient brightenings as well as continuous radiation. The e
Magnetic field dependent transient solar observations are suggestive for axion-photon oscillations with light axion(-like) particle involvement. Novel dark-moon measurements with the SMART X-ray detectors can be conclusive for radiatively decaying ma
The first searches for axions and axion-like particles with the Large Underground Xenon (LUX) experiment are presented. Under the assumption of an axio-electric interaction in xenon, the coupling constant between axions and electrons, gAe is tested,
The growing interest in axion-like particles (ALPs) stems from the fact that they provide successful theoretical explanations of physics phenomena, from the anomaly of the CP-symmetry conservation in strong interactions to the observation of an unexp
The excess of electron recoil events seen by the XENON1T experiment has been interpreted as a potential signal of axion-like particles (ALPs), either produced in the Sun, or constituting part of the dark matter halo of the Milky Way. It has also been