ﻻ يوجد ملخص باللغة العربية
The working principle of axion helioscopes can be behind unexpected solar X-ray emission, being associated with solar magnetic fields, which become the catalyst. Solar axion signals can be transient brightenings as well as continuous radiation. The energy range below 1 keV is a window of opportunity for direct axion searches. (In)direct signatures support axions or the like as an explanation of striking behaviour of X-rays from the Sun.
The first part reviews the working mechanisms, capabilities and performance of axion helioscopes, including the achieved results so far. The 2nd part is observationally driven. New simulation results obtained with the Geant4 code reconstruct spectral
Magnetic field dependent transient solar observations are suggestive for axion-photon oscillations with light axion(-like) particle involvement. Novel dark-moon measurements with the SMART X-ray detectors can be conclusive for radiatively decaying ma
The excess of electron recoil events seen by the XENON1T experiment has been interpreted as a potential signal of axion-like particles (ALPs), either produced in the Sun, or constituting part of the dark matter halo of the Milky Way. It has also been
We explore the sensitivity of photon-beam experiments to axion-like particles (ALPs) with QCD-scale masses whose dominant coupling to the Standard Model is either to photons or gluons. We introduce a novel data-driven method that eliminates the need
The physics case for axions and axion-like particles is reviewed and an overview of ongoing and near-future laboratory searches is presented.