ﻻ يوجد ملخص باللغة العربية
Whereas matrix rank is additive under direct sum, in 1981 Schonhage showed that one of its generalizations to the tensor setting, tensor border rank, can be strictly subadditive for tensors of order three. Whether border rank is additive for higher order tensors has remained open. In this work, we settle this problem by providing analogs of Schonhages construction for tensors of order four and higher. Schonhages work was motivated by the study of the computational complexity of matrix multiplication; we discuss implications of our results for the asymptotic rank of higher order generalizations of the matrix multiplication tensor.
We investigate an extension of a lower bound on the Waring (cactus) rank of homogeneous forms due to Ranestad and Schreyer. We show that for particular classes of homogeneous forms, for which a generalization of this method applies, the lower bound e
The $X$-rank of a point $p$ in projective space is the minimal number of points of an algebraic variety $X$ whose linear span contains $p$. This notion is naturally submultiplicative under tensor product. We study geometric conditions that guarantee
Sparse tensor best rank-1 approximation (BR1Approx), which is a sparsity generalization of the dense tensor BR1Approx, and is a higher-order extension of the sparse matrix BR1Approx, is one of the most important problems in sparse tensor decompositio
It has recently been shown that the tensor rank can be strictly submultiplicative under the tensor product, where the tensor product of two tensors is a tensor whose order is the sum of the orders of the two factors. The necessary upper bounds were o
We present three families of minimal border rank tensors: they come from highest weight vectors, smoothable algebras, or monomial algebras. We analyse them using Strassens laser method and obtain an upper bound $2.431$ on $omega$. We also explain how