ﻻ يوجد ملخص باللغة العربية
We investigate an extension of a lower bound on the Waring (cactus) rank of homogeneous forms due to Ranestad and Schreyer. We show that for particular classes of homogeneous forms, for which a generalization of this method applies, the lower bound extends to the level of border (cactus) rank. The approach is based on recent results on tensor asymptotic rank.
We show that the Waring rank of the $3 times 3$ determinant, previously known to be between $14$ and $18$, is at least $15$. We use syzygies of the apolar ideal, which have not been used in this way before. Additionally, we show that the cactus rank of the $3 times 3$ permanent is at least $14$.
The $X$-rank of a point $p$ in projective space is the minimal number of points of an algebraic variety $X$ whose linear span contains $p$. This notion is naturally submultiplicative under tensor product. We study geometric conditions that guarantee
Whereas matrix rank is additive under direct sum, in 1981 Schonhage showed that one of its generalizations to the tensor setting, tensor border rank, can be strictly subadditive for tensors of order three. Whether border rank is additive for higher o
We discuss the Waring rank of binary forms of degree 4 and 5, without multiple factors, and point out unexpected relations to the harmonic cross-ratio, j-invariants and the golden ratio. These computations of ranks for binary forms are used to show t
It has recently been shown that the tensor rank can be strictly submultiplicative under the tensor product, where the tensor product of two tensors is a tensor whose order is the sum of the orders of the two factors. The necessary upper bounds were o