ﻻ يوجد ملخص باللغة العربية
The $X$-rank of a point $p$ in projective space is the minimal number of points of an algebraic variety $X$ whose linear span contains $p$. This notion is naturally submultiplicative under tensor product. We study geometric conditions that guarantee strict submultiplicativity. We prove that in the case of points of rank two, strict submultiplicativity is entirely characterized in terms of the trisecant lines to the variety. Moreover, we focus on the case of curves: we prove that for curves embedded in an even-dimensional projective space, there are always points for which strict submultiplicativity occurs, with the only exception of rational normal curves.
We investigate an extension of a lower bound on the Waring (cactus) rank of homogeneous forms due to Ranestad and Schreyer. We show that for particular classes of homogeneous forms, for which a generalization of this method applies, the lower bound e
Whereas matrix rank is additive under direct sum, in 1981 Schonhage showed that one of its generalizations to the tensor setting, tensor border rank, can be strictly subadditive for tensors of order three. Whether border rank is additive for higher o
It has recently been shown that the tensor rank can be strictly submultiplicative under the tensor product, where the tensor product of two tensors is a tensor whose order is the sum of the orders of the two factors. The necessary upper bounds were o
We make a first geometric study of three varieties in $mathbb{C}^m otimes mathbb{C}^m otimes mathbb{C}^m$ (for each $m$), including the Zariski closure of the set of tight tensors, the tensors with continuous regular symmetry. Our motivation is to de
Fix a Calabi-Yau 3-fold $X$ satisfying the Bogomolov-Gieseker conjecture of Bayer-Macr`i-Toda, such as the quintic 3-fold. We express Joyces generalised DT invariants counting Gieseker semistable sheaves of any rank $rge1$ on $X$ in terms of those co