ﻻ يوجد ملخص باللغة العربية
This paper concerns the problem of 1-bit compressed sensing, where the goal is to estimate a sparse signal from a few of its binary measurements. We study a non-convex sparsity-constrained program and present a novel and concise analysis that moves away from the widely used notion of Gaussian width. We show that with high probability a simple algorithm is guaranteed to produce an accurate approximation to the normalized signal of interest under the $ell_2$-metric. On top of that, we establish an ensemble of new results that address norm estimation, support recovery, and model misspecification. On the computational side, it is shown that the non-convex program can be solved via one-step hard thresholding which is dramatically efficient in terms of time complexity and memory footprint. On the statistical side, it is shown that our estimator enjoys a near-optimal error rate under standard conditions. The theoretical results are substantiated by numerical experiments.
Is it possible to obliviously construct a set of hyperplanes H such that you can approximate a unit vector x when you are given the side on which the vector lies with respect to every h in H? In the sparse recovery literature, where x is approximatel
Bayesian optimization is a sequential decision making framework for optimizing expensive-to-evaluate black-box functions. Computing a full lookahead policy amounts to solving a highly intractable stochastic dynamic program. Myopic approaches, such as
We consider the problem of sparse signal reconstruction from noisy one-bit compressed measurements when the receiver has access to side-information (SI). We assume that compressed measurements are corrupted by additive white Gaussian noise before qua
Compressed sensing (CS) or sparse signal reconstruction (SSR) is a signal processing technique that exploits the fact that acquired data can have a sparse representation in some basis. One popular technique to reconstruct or approximate the unknown s
This note studies the worst-case recovery error of low-rank and bisparse matrices as a function of the number of one-bit measurements used to acquire them. First, by way of the concept of consistency width, precise estimates are given on how fast the