ﻻ يوجد ملخص باللغة العربية
We consider the problem of sparse signal reconstruction from noisy one-bit compressed measurements when the receiver has access to side-information (SI). We assume that compressed measurements are corrupted by additive white Gaussian noise before quantization and sign-flip error after quantization. A generalized approximate message passing-based method for signal reconstruction from noisy one-bit compressed measurements is proposed, which is then extended for the case where the receiver has access to a signal that aids signal reconstruction, i.e., side-information. Two different scenarios of side-information are considered-a) side-information consisting of support information only, and b) side information consisting of support and amplitude information. SI is either a noisy version of the signal or a noisy estimate of the support of the signal. We develop reconstruction algorithms from one-bit measurements using noisy SI available at the receiver. Laplacian distribution and Bernoulli distribution are used to model the two types of noises which, when applied to the signal and the support, yields the SI for the above two cases, respectively. The Expectation-Maximization algorithm is used to estimate the noise parameters using noisy one-bit compressed measurements and the SI. We show that one-bit compressed measurement-based signal reconstruction is quite sensitive to noise, and the reconstruction performance can be significantly improved by exploiting available side-information at the receiver.
Is it possible to obliviously construct a set of hyperplanes H such that you can approximate a unit vector x when you are given the side on which the vector lies with respect to every h in H? In the sparse recovery literature, where x is approximatel
This paper concerns the problem of 1-bit compressed sensing, where the goal is to estimate a sparse signal from a few of its binary measurements. We study a non-convex sparsity-constrained program and present a novel and concise analysis that moves a
In a frequency division duplex (FDD) massive multiple input multiple output (MIMO) system, the channel state information (CSI) feedback causes a significant bandwidth resource occupation. In order to save the uplink bandwidth resources, a 1-bit compr
We present a novel scheme allowing for 2D target localization using highly quantized 1-bit measurements from a Frequency Modulated Continuous Wave (FMCW) radar with two receiving antennas. Quantization of radar signals introduces localization artifac
We consider the problem of sparse signal recovery from 1-bit measurements. Due to the noise present in the acquisition and transmission process, some quantized bits may be flipped to their opposite states. These sign flips may result in severe perfor