ﻻ يوجد ملخص باللغة العربية
This note studies the worst-case recovery error of low-rank and bisparse matrices as a function of the number of one-bit measurements used to acquire them. First, by way of the concept of consistency width, precise estimates are given on how fast the recovery error can in theory decay. Next, an idealized recovery method is proved to reach the fourth-root of the optimal decay rate for Gaussian sensing schemes. This idealized method being impractical, an implementable recovery algorithm is finally proposed in the context of factorized Gaussian sensing schemes. It is shown to provide a recovery error decaying as the sixth-root of the optimal rate.
Is it possible to obliviously construct a set of hyperplanes H such that you can approximate a unit vector x when you are given the side on which the vector lies with respect to every h in H? In the sparse recovery literature, where x is approximatel
Expressing a matrix as the sum of a low-rank matrix plus a sparse matrix is a flexible model capturing global and local features in data. This model is the foundation of robust principle component analysis (Candes et al., 2011) (Chandrasekaran et al.
We investigate the problem of recovering jointly $r$-rank and $s$-bisparse matrices from as few linear measurements as possible, considering arbitrary measurements as well as rank-one measurements. In both cases, we show that $m asymp r s ln(en/s)$ m
This paper concerns the problem of 1-bit compressed sensing, where the goal is to estimate a sparse signal from a few of its binary measurements. We study a non-convex sparsity-constrained program and present a novel and concise analysis that moves a
In this paper, we propose a new algorithm for recovery of low-rank matrices from compressed linear measurements. The underlying idea of this algorithm is to closely approximate the rank function with a smooth function of singular values, and then min