ﻻ يوجد ملخص باللغة العربية
Let $mathcal{A}$ and $mathcal{B}$ be two factor von Neumann algebras and $eta$ be a non-zero complex number. A nonlinear bijective map $phi:mathcal Arightarrowmathcal B$ has been demonstrated to satisfy $$phi([A,B]_{*}^{eta}diamond_{eta} C)=[phi(A),phi(B)]_{*}^{eta}diamond_{eta}phi(C)$$ for all $A,B,Cinmathcal A.$ If $eta=1,$ then $phi$ is a linear $*$-isomorphism, a conjugate linear $*$-isomorphism, the negative of a linear $*$-isomorphism, or the negative of a conjugate linear $*$-isomorphism. If $eta eq 1$ and satisfies $phi(I)=1,$ then $phi$ is either a linear $*$-isomorphism or a conjugate linear $*$-isomorphism.
The Wigners theorem, which is one of the cornerstones of the mathematical formulation of quantum mechanics, asserts that every symmetry of quantum system is unitary or anti-unitary. This classical result was first given by Wigner in 1931. Thereafter
We study the structure of C*-algebras associated with compactly aligned product systems over group embeddable right LCM-semigroups. Towards this end we employ controlled maps and a controlled elimination method that associates the original cores to t
A Banach algebra $A$ is said to be a zero Jordan product determined Banach algebra if every continuous bilinear map $varphicolon Atimes Ato X$, where $X$ is an arbitrary Banach space, which satisfies $varphi(a,b)=0$ whenever $a$, $bin A$ are such tha
Three-dimensional conformal theories with six supersymmetries and SU(4) R-symmetry describing stacks of M2-branes are here proposed to be related to generalized Jordan triple systems. Writing the four-index structure constants in an appropriate form,
We consider a Banach algebra $A$ with the property that, roughly speaking, sufficiently many irreducible representations of $A$ on nontrivial Banach spaces do not vanish on all square zero elements. The class of Banach algebras with this property tur