ترغب بنشر مسار تعليمي؟ اضغط هنا

Co-universality and controlled maps on product systems over right LCM-semigroups

339   0   0.0 ( 0 )
 نشر من قبل Evgenios Kakariadis T.A.
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the structure of C*-algebras associated with compactly aligned product systems over group embeddable right LCM-semigroups. Towards this end we employ controlled maps and a controlled elimination method that associates the original cores to those of the controlling pair, and we combine with applications of the C*-envelope theory for cosystems of nonselfadjoint operator algebras recently produced. We derive several applications of these methods that generalize results on single C*-correspondences. First we show that if the controlling group is exact then the co-universal C*-algebra of the product system coincides with the quotient of the Fock C*-algebra by the ideal of strong covariance relations. We show that if the controlling group is amenable then the product system is amenable. In particular if the controlling group is abelian then the co-universal C*-algebra is the C*-envelope of the tensor algebra. Secondly we give necessary and sufficient conditions for the Fock C*-algebra to be nuclear and exact. When the controlling group is amenable we completely characterize nuclearity and exactness of any equivariant injective Nica-covariant representation of the product system. Thirdly we consider controlled maps that enjoy a saturation property. In this case we induce a compactly aligned product system over the controlling pair that shares the same Fock representation, and preserves injectivity. By using co-universality, we show that they share the same reduced covariance algebras. If in addition the controlling pair is a total order then the fixed point algebra of the controlling group induces a super-product system that has the same reduced covariance algebra and is moreover reversible.

قيم البحث

اقرأ أيضاً

We introduce the notion of additive units, or `addits, of a pointed Arveson system, and demonstrate their usefulness through several applications. By a pointed Arveson system we mean a spatial Arveson system with a fixed normalised reference unit. We show that the addits form a Hilbert space whose codimension-one subspace of `roots is isomorphic to the index space of the Arveson system, and that the addits generate the type I part of the Arveson system. Consequently the isomorphism class of the Hilbert space of addits is independent of the reference unit. The addits of a pointed inclusion system are shown to be in natural correspondence with the addits of the generated pointed product system. The theory of amalgamated products is developed using addits and roots, and an explicit formula for the amalgamation of pointed Arveson systems is given, providing a new proof of its independence of the particular reference units. (This independence justifies the terminology `spatial product of spatial Arveson systems). Finally a cluster construction for inclusion subsystems of an Arveson system is introduced and we demonstrate its correspondence with the action of the Cantor--Bendixson derivative in the context of the random closed set approach to product systems due to Tsirelson and Liebscher.
An E_0-semigroup is called q-pure if it is a CP-flow and its set of flow subordinates is totally ordered by subordination. The range rank of a positive boundary weight map is the dimension of the range of its dual map. Let K be a separable Hilbert sp ace. We describe all q-pure E_0-semigroups of type II_0 which arise from boundary weight maps with range rank one over K. We also prove that no q-pure E_0-semigroups of type II_0 arise from boundary weight maps with range rank two over K. In the case when K is finite-dimensional, we provide a criterion to determine if two boundary weight maps of range rank one over K give rise to cocycle conjugate q-pure E_0-semigroups.
We consider C*-algebras of finite higher-rank graphs along with their rotational action. We show how the entropy theory of product systems with finite frames applies to identify the phase transitions of the dynamics. We compute the positive inverse t emperatures where symmetry breaks, and in particular we identify the subharmonic parts of the gauge-invariant equilibrium states. Our analysis applies to positively weighted rotational actions through a recalibration of the entropies.
We analyze the dichotomy amenable/paradoxical in the context of (discrete, countable, unital) semigroups and corresponding semigroup rings. We consider also F{o}lners type characterizations of amenability and give an example of a semigroup whose semi group ring is algebraically amenable but has no F{o}lner sequence. In the context of inverse semigroups $S$ we give a characterization of invariant measures on $S$ (in the sense of Day) in terms of two notions: $domain$ $measurability$ and $localization$. Given a unital representation of $S$ in terms of partial bijections on some set $X$ we define a natural generalization of the uniform Roe algebra of a group, which we denote by $mathcal{R}_X$. We show that the following notions are then equivalent: (1) $X$ is domain measurable; (2) $X$ is not paradoxical; (3) $X$ satisfies the domain F{o}lner condition; (4) there is an algebraically amenable dense *-subalgebra of $mathcal{R}_X$; (5) $mathcal{R}_X$ has an amenable trace; (6) $mathcal{R}_X$ is not properly infinite and (7) $[0] ot=[1]$ in the $K_0$-group of $mathcal{R}_X$. We also show that any tracial state on $mathcal{R}_X$ is amenable. Moreover, taking into account the localization condition, we give several C*-algebraic characterizations of the amenability of $X$. Finally, we show that for a certain class of inverse semigroups, the quasidiagonality of $C_r^*left(Xright)$ implies the amenability of $X$. The converse implication is false.
We study two classes of operator algebras associated with a unital subsemigroup $P$ of a discrete group $G$: one related to universal structures, and one related to co-universal structures. First we provide connections between universal C*-algebras t hat arise variously from isometric representations of $P$ that reflect the space $mathcal{J}$ of constructible right ideals, from associated Fell bundles, and from induced partial actions. This includes connections of appropriate quotients with the strong covariance relations in the sense of Sehnem. We then pass to the reduced representation $mathrm{C}^*_lambda(P)$ and we consider the boundary quotient $partial mathrm{C}^*_lambda(P)$ related to the minimal boundary space. We show that $partial mathrm{C}^*_lambda(P)$ is co-universal in two different classes: (a) with respect to the equivariant constructible isometric representations of $P$; and (b) with respect to the equivariant C*-covers of the reduced nonselfadjoint semigroup algebra $mathcal{A}(P)$. If $P$ is an Ore semigroup, or if $G$ acts topologically freely on the minimal boundary space, then $partial mathrm{C}^*_lambda(P)$ coincides with the usual C*-envelope $mathrm{C}^*_{text{env}}(mathcal{A}(P))$ in the sense of Arveson. This covers total orders, finite type and right-angled Artin monoids, the Thompson monoid, multiplicative semigroups of nonzero algebraic integers, and the $ax+b$-semigroups over integral domains that are not a field. In particular, we show that $P$ is an Ore semigroup if and only if there exists a canonical $*$-isomorphism from $partial mathrm{C}^*_lambda(P)$, or from $mathrm{C}^*_{text{env}}(mathcal{A}(P))$, onto $mathrm{C}^*_lambda(G)$. If any of the above holds, then $mathcal{A}(P)$ is shown to be hyperrigid.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا