ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconformal M2-branes and generalized Jordan triple systems

166   0   0.0 ( 0 )
 نشر من قبل Jakob Palmkvist
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Three-dimensional conformal theories with six supersymmetries and SU(4) R-symmetry describing stacks of M2-branes are here proposed to be related to generalized Jordan triple systems. Writing the four-index structure constants in an appropriate form, the Chern-Simons part of the action immediately suggests a connection to such triple systems. In contrast to the previously considered three-algebras, the additional structure of a generalized Jordan triple system is associated to a graded Lie algebra, which corresponds to an extension of the gauge group. In this note we show that the whole theory with six manifest supersymmetries can be naturally expressed in terms of such a graded Lie algebra. Also the BLG theory with eight supersymmetries is included as a special case.



قيم البحث

اقرأ أيضاً

We propose a natural generalisation of the BLG multiple M2-brane action to membranes in curved plane wave backgrounds, and verify in two different ways that the action correctly captures the non-trivial space-time geometry. We show that the M2 to D2 reduction of the theory along a non-trivial direction in field space is equivalent to the D2-brane world-volume Yang-Mills theory with a non-trivial (null-time dependent) dilaton in the corresponding IIA background geometry. As another consistency check of this proposal we show that the properties of metric 3-algebras ensure the equivalence of the Rosen coordinate version of this action (time-dependent metric on the space of 3-algebra valued scalar fields, no mass terms) and its Brinkmann counterpart (constant couplings but time-dependent mass terms). We also establish an analogous result for deformed Yang-Mills theories in any dimension which, in particular, demonstrates the equivalence of the Rosen and Brinkmann forms of the plane wave matrix string action.
We consider periodic arrays of M2-branes in the ABJM model in the spirit of a circle compactification to D2-branes in type IIA string theory. The result is a curious formulation of three-dimensional maximally supersymmetric Yang-Mills theory in terms of fermions, seven transverse scalars, a non-dynamical gauge field and an additional scalar `dual gluon. Upon further T-duality on a transverse torus we obtain a non-manifest-Lorentz-invariant description of five-dimensional maximally supersymmetric Yang-Mills. Here the additional scalar field can be thought of as the components of a two-form along the torus. This action can be viewed as an M-theory description of M5-branes on ${mathbb T}^3$.
Motivated by the recent proposal of an N=8 supersymmetric action for multiple M2-branes, we study the Lie 3-algebra in detail. In particular, we focus on the fundamental identity and the relation with Nambu-Poisson bracket. Some new algebras not know n in the literature are found. Next we consider cubic matrix representations of Lie 3-algebras. We show how to obtain higher dimensional representations by tensor products for a generic 3-algebra. A criterion of reducibility is presented. We also discuss the application of Lie 3-algebra to the membrane physics, including the Basu-Harvey equation and the Bagger-Lambert model.
We show the relation between three non trivial sectors of M2-brane theory formulated in the LCG connected among them by canonical transformations. These sectors correspond to the supermembrane theory formulated on a $M_9times T^2$ on three different constant three-form backgrounds: M2-brane with constant $C_{-}$, M2-brane with constant $C_{pm}$ and M2-brane with a generic constant $C_3$ denoted as CM2-brane. The first two exhibit a purely discrete supersymmetric spectrum once the central charge condition, or equivalently, the corresponding flux condition has been turned on. The CM2-brane is conjectured to share this spectral property once that fluxes $C_{pm}$ are turned on. As shown in [1] they are duals to three inequivalent sectors of the D2-branes with specific worldvolume and background RR and NSNS quantization conditions on each case.
We show that M-theory admits a supersymmetric compactification to the Godel universe of the form Godel3 x S2 x CY3. We interpret this geometry as coming from the backreaction of M2-branes wrapping the S2 in an AdS3 x S2 x CY3 flux compactification. I n the black hole deconstruction proposal similar states give rise to the entropy of a D4-D0 black hole. The system is effectively described by a three-dimensional theory consisting of an axion-dilaton coupled to gravity with a negative cosmological constant. Other embeddings of the three-dimensional theory imply similar supersymmetric Godel compactifications of type IIA/IIB string theory and F-theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا