ترغب بنشر مسار تعليمي؟ اضغط هنا

Supporting Real-Time COVID-19 Medical Management Decisions: The Transition Matrix Model Approach

70   0   0.0 ( 0 )
 نشر من قبل Michael Fu
 تاريخ النشر 2020
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Since the onset of the COVID-19 outbreak in Wuhan, China, numerous forecasting models have been proposed to project the trajectory of coronavirus infection cases. We propose a new discrete-time Markov chain transition matrix model that directly incorporates stochastic behavior and for which parameter estimation is straightforward from available data. Using such data from Chinas Hubei province (for which Wuhan is the provincial capital city), the model is shown to be flexible, robust, and accurate. As a result, it has been adopted by the first Shanghai assistance medical team in Wuhans Jinyintan Hospital, which was the first designated hospital to take COVID-19 patients in the world. The forecast has been used for preparing medical staff, intensive care unit (ICU) beds, ventilators, and other critical care medical resources and for supporting real-time medical management decisions. Empirical data from Chinas first two months (January/February) of fighting COVID-19 was collected and used to enhance the model by embedding NPI efficiency into the model. We applied the model to forecast Italy, South Korea, and Iran on March 9. Later we made forecasts for Spain, Germany, France, US on March 24. Again, the model has performed very well, proven to be flexible, robust, and accurate for most of these countries/regions outside China.



قيم البحث

اقرأ أيضاً

113 - J. E. Amaro 2020
We present a simple analytical model to describe the fast increase of deaths produced by the corona virus (COVID-19) infections. The D (deaths) model comes from a simplified version of the SIR (susceptible-infected-recovered) model known as SI model. It assumes that there is no recovery. In that case the dynamical equations can be solved analytically and the result is extended to describe the D-function that depends on three parameters that we can fit to the data. Results for the data from Spain, Italy and China are presented. The model is validated by comparing with the data of deaths in China, which are well described. This allows to make predictions for the development of the disease in Spain and Italy.
128 - R. Jayatilaka , R. Patel , M. Brar 2021
Disease transmission is studied through disciplines like epidemiology, applied mathematics, and statistics. Mathematical simulation models for transmission have implications in solving public and personal health challenges. The SIR model uses a compa rtmental approach including dynamic and nonlinear behavior of transmission through three factors: susceptible, infected, and removed (recovered and deceased) individuals. Using the Lambert W Function, we propose a framework to study solutions of the SIR model. This demonstrates the applications of COVID-19 transmission data to model the spread of a real-world disease. Different models of disease including the SIR, SIRm and SEIR model are compared with respect to their ability to predict disease spread. Physical distancing impacts and personal protection equipment use will be discussed in relevance to the COVID-19 spread.
158 - T. Barnes 2020
We consider a global (location independent) model of pandemic growth which generalizes the SIR model to accommodate important features of the COVID-19 pandemic, notably the implementation of pandemic reduction measures. This SHIR model is applied to COVID-19 data, and shows promise as a simple, tractable formalism with few parameters that can be used to model pandemic case numbers. As an example we show that the average time dependence of new COVID-19 cases per day from 15 Central and Western European countries is in good agreement with the analytic, parameter-free prediction of the model
The Covid-19 epidemic of the novel coronavirus (severe acute respiratory syndrome SARS - CoV-2) has been spreading around the world. While different containment policies using non-pharmaceutical interventions have been applied, their efficiency are n ot known quantitatively. We show that the doubling time Td(t) with the success s factor, the characteristic time of the exponential growth of Td(t) in the arrested regime, is a reliable tool for early predictions of epidemic spread time evolution and it provides a quantitative measure of the success of different containment measures. The efficiency of the containment policy Lockdown case Finding mobile Tracing (LFT) using mandatory mobile contact tracing is much higher than the Lockdown Stop and Go (LSG) policy proposed by the Imperial College team in London. A very low s factor was reached by LFT policy giving the shortest time width of the dome of positive case curve and the lowest number of fatalities. The LFT policy has been able to reduce by a factor 100 the number of fatalities in the first 100 days of the Covid-19 epidemic, to reduce the time width of the Covid-19 pandemic dome by a factor 2.5 and to rapidly stop new outbreaks avoiding the second wave
191 - Nilmani Mathur , Gargi Shaw 2020
We propose a mathematical model to analyze the time evolution of the total number of infected population with Covid-19 disease at a region in the ongoing pandemic. Using the available data of Covid-19 infected population on various countries we formu late a model which can successfully track the time evolution from early days to the saturation period in a given wave of this infectious disease. It involves a set of effective parameters which can be extracted from the available data. Using those parameters the future trajectories of the disease spread can also be projected. A set of differential equations is also proposed whose solutions are these time evolution trajectories. Using such a formalism we project the future time evolution trajectories of infection spread for a number of countries where the Covid-19 infection is still rapidly rising.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا