ﻻ يوجد ملخص باللغة العربية
We present a simple analytical model to describe the fast increase of deaths produced by the corona virus (COVID-19) infections. The D (deaths) model comes from a simplified version of the SIR (susceptible-infected-recovered) model known as SI model. It assumes that there is no recovery. In that case the dynamical equations can be solved analytically and the result is extended to describe the D-function that depends on three parameters that we can fit to the data. Results for the data from Spain, Italy and China are presented. The model is validated by comparing with the data of deaths in China, which are well described. This allows to make predictions for the development of the disease in Spain and Italy.
Redlining is the discriminatory practice whereby institutions avoided investment in certain neighborhoods due to their demographics. Here we explore the lasting impacts of redlining on the spread of COVID-19 in New York City (NYC). Using data availab
Disease transmission is studied through disciplines like epidemiology, applied mathematics, and statistics. Mathematical simulation models for transmission have implications in solving public and personal health challenges. The SIR model uses a compa
We consider a global (location independent) model of pandemic growth which generalizes the SIR model to accommodate important features of the COVID-19 pandemic, notably the implementation of pandemic reduction measures. This SHIR model is applied to
An epidemiological model is developed for the spread of COVID-19 in South Africa. A variant of the classical compartmental SEIR model, called the SEIQRDP model, is used. As South Africa is still in the early phases of the global COVID-19 pandemic wit
We present a compartmental meta-population model for the spread of Covid-19 in India. Our model simulates populations at a district or state level using an epidemiological model that is appropriate to Covid-19. Different districts are connected by a