ﻻ يوجد ملخص باللغة العربية
In the present study, six meta-heuristic schemes are hybridized with artificial neural network (ANN), adaptive neuro-fuzzy interface system (ANFIS), and support vector machine (SVM), to predict monthly groundwater level (GWL), evaluate uncertainty analysis of predictions and spatial variation analysis. The six schemes, including grasshopper optimization algorithm (GOA), cat swarm optimization (CSO), weed algorithm (WA), genetic algorithm (GA), krill algorithm (KA), and particle swarm optimization (PSO), were used to hybridize for improving the performance of ANN, SVM, and ANFIS models. Groundwater level (GWL) data of Ardebil plain (Iran) for a period of 144 months were selected to evaluate the hybrid models. The pre-processing technique of principal component analysis (PCA) was applied to reduce input combinations from monthly time series up to 12-month prediction intervals. The results showed that the ANFIS-GOA was superior to the other hybrid models for predicting GWL in the first piezometer and third piezometer in the testing stage. The performance of hybrid models with optimization algorithms was far better than that of classical ANN, ANFIS, and SVM models without hybridization. The percent of improvements in the ANFIS-GOA versus standalone ANFIS in piezometer 10 were 14.4%, 3%, 17.8%, and 181% for RMSE, MAE, NSE, and PBIAS in the training stage and 40.7%, 55%, 25%, and 132% in testing stage, respectively. The improvements for piezometer 6 in train step were 15%, 4%, 13%, and 208% and in the test step were 33%, 44.6%, 16.3%, and 173%, respectively, that clearly confirm the superiority of developed hybridization schemes in GWL modeling. Uncertainty analysis showed that ANFIS-GOA and SVM had, respectively, the best and worst performances among other models. In general, GOA enhanced the accuracy of the ANFIS, ANN, and SVM models.
Epilepsy is one of the most crucial neurological disorders, and its early diagnosis will help the clinicians to provide accurate treatment for the patients. The electroencephalogram (EEG) signals are widely used for epileptic seizures detection, whic
We study the task of replicating the functionality of black-box neural models, for which we only know the output class probabilities provided for a set of input images. We assume back-propagation through the black-box model is not possible and its tr
Evolutionary algorithms (EA) have been widely accepted as efficient solvers for complex real world optimization problems, including engineering optimization. However, real world optimization problems often involve uncertain environment including nois
Physiological signals, such as the electrocardiogram and the phonocardiogram are very often corrupted by noisy sources. Usually, artificial intelligent algorithms analyze the signal regardless of its quality. On the other hand, physicians use a compl
We introduce a new framework for unifying and systematizing the performance analysis of first-order black-box optimization algorithms for unconstrained convex minimization. The low-cost iteration complexity enjoyed by first-order algorithms renders t