ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of Epileptic Seizures on EEG Signals Using ANFIS Classifier, Autoencoders and Fuzzy Entropies

72   0   0.0 ( 0 )
 نشر من قبل Navid Ghassemi
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Epilepsy is one of the most crucial neurological disorders, and its early diagnosis will help the clinicians to provide accurate treatment for the patients. The electroencephalogram (EEG) signals are widely used for epileptic seizures detection, which provides specialists with substantial information about the functioning of the brain. In this paper, a novel diagnostic procedure using fuzzy theory and deep learning techniques are introduced. The proposed method is evaluated on the Bonn University dataset with six classification combinations and also on the Freiburg dataset. The tunable-Q wavelet transform (TQWT) is employed to decompose the EEG signals into different sub-bands. In the feature extraction step, 13 different fuzzy entropies are calculated from different sub-bands of TQWT, and their computational complexities are calculated to help researchers choose the best feature sets. In the following, an autoencoder (AE) with six layers is employed for dimensionality reduction. Finally, the standard adaptive neuro-fuzzy inference system (ANFIS), and also its variants with grasshopper optimization algorithm (ANFIS-GOA), particle swarm optimization (ANFIS-PSO), and breeding swarm optimization (ANFIS-BS) methods are used for classification. Using our proposed method, ANFIS-BS method has obtained an accuracy of 99.74% in classifying into two classes and an accuracy of 99.46% in ternary classification on the Bonn dataset and 99.28% on the Freiburg dataset, reaching state-of-the-art performances on both of them.



قيم البحث

اقرأ أيضاً

In this work we study how to apply topological data analysis to create a method suitable to classify EEGs of patients affected by epilepsy. The topological space constructed from the collection of EEGs signals is analyzed by Persistent Entropy acting as a global topological feature for discriminating between healthy and epileptic signals. The Physionet data-set has been used for testing the classifier.
Schizophrenia (SZ) is a mental disorder whereby due to the secretion of specific chemicals in the brain, the function of some brain regions is out of balance, leading to the lack of coordination between thoughts, actions, and emotions. This study pro vides various intelligent Deep Learning (DL)-based methods for automated SZ diagnosis via EEG signals. The obtained results are compared with those of conventional intelligent methods. In order to implement the proposed methods, the dataset of the Institute of Psychiatry and Neurology in Warsaw, Poland, has been used. First, EEG signals are divided into 25-seconds time frames and then were normalized by z-score or norm L2. In the classification step, two different approaches are considered for SZ diagnosis via EEG signals. In this step, the classification of EEG signals is first carried out by conventional DL methods, e.g., KNN, DT, SVM, Bayes, bagging, RF, and ET. Various proposed DL models, including LSTMs, 1D-CNNs, and 1D-CNN-LSTMs, are used in the following. In this step, the DL models were implemented and compared with different activation functions. Among the proposed DL models, the CNN-LSTM architecture has had the best performance. In this architecture, the ReLU activation function and the z-score and L2 combined normalization are used. The proposed CNN-LSTM model has achieved an accuracy percentage of 99.25%, better than the results of most former studies in this field. It is worth mentioning that in order to perform all simulations, the k-fold cross-validation method with k=5 has been used.
Epilepsy is a neurological disorder classified as the second most serious neurological disease known to humanity, after stroke. Localization of the epileptogenic zone is an important step for epileptic patient treatment, which starts with epileptic s pike detection. The common practice for spike detection of brain signals is via visual scanning of the recordings, which is a subjective and a very time-consuming task. Motivated by that, this paper focuses on using machine learning for automatic detection of epileptic spikes in magnetoencephalography (MEG) signals. First, we used the Position Weight Matrix (PWM) method combined with a uniform quantizer to generate useful features. Second, the extracted features are classified using a Support Vector Machine (SVM) for the purpose of epileptic spikes detection. The proposed technique shows great potential in improving the spike detection accuracy and reducing the feature vector size. Specifically, the proposed technique achieved average accuracy up to 98% in using 5-folds cross-validation applied to a balanced dataset of 3104 samples. These samples are extracted from 16 subjects where eight are healthy and eight are epileptic subjects using a sliding frame of size of 100 samples-points with a step-size of 2 sample-points
We propose a computationally efficient algorithm for seizure detection. Instead of using a purely data-driven approach, we develop a hybrid model-based/data-driven method, combining convolutional neural networks with factor graph inference. On the CH B-MIT dataset, we demonstrate that the proposed method can generalize well in a 6 fold leave-4-patientout evaluation. Moreover, it is shown that our algorithm can achieve as much as 5% absolute improvement in performance compared to previous data-driven methods. This is achieved while the computational complexity of the proposed technique is a fraction of the complexity of prior work, making it suitable for real-time seizure detection.
In the present study, six meta-heuristic schemes are hybridized with artificial neural network (ANN), adaptive neuro-fuzzy interface system (ANFIS), and support vector machine (SVM), to predict monthly groundwater level (GWL), evaluate uncertainty an alysis of predictions and spatial variation analysis. The six schemes, including grasshopper optimization algorithm (GOA), cat swarm optimization (CSO), weed algorithm (WA), genetic algorithm (GA), krill algorithm (KA), and particle swarm optimization (PSO), were used to hybridize for improving the performance of ANN, SVM, and ANFIS models. Groundwater level (GWL) data of Ardebil plain (Iran) for a period of 144 months were selected to evaluate the hybrid models. The pre-processing technique of principal component analysis (PCA) was applied to reduce input combinations from monthly time series up to 12-month prediction intervals. The results showed that the ANFIS-GOA was superior to the other hybrid models for predicting GWL in the first piezometer and third piezometer in the testing stage. The performance of hybrid models with optimization algorithms was far better than that of classical ANN, ANFIS, and SVM models without hybridization. The percent of improvements in the ANFIS-GOA versus standalone ANFIS in piezometer 10 were 14.4%, 3%, 17.8%, and 181% for RMSE, MAE, NSE, and PBIAS in the training stage and 40.7%, 55%, 25%, and 132% in testing stage, respectively. The improvements for piezometer 6 in train step were 15%, 4%, 13%, and 208% and in the test step were 33%, 44.6%, 16.3%, and 173%, respectively, that clearly confirm the superiority of developed hybridization schemes in GWL modeling. Uncertainty analysis showed that ANFIS-GOA and SVM had, respectively, the best and worst performances among other models. In general, GOA enhanced the accuracy of the ANFIS, ANN, and SVM models.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا